La Trobe
Dutka-17-nitrosylation-AJPCell epub.pdf (1.09 MB)

S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers

Download (1.09 MB)
journal contribution
posted on 2021-08-12, 06:32 authored by Travis DutkaTravis Dutka, JP Mollica, CR Lamboley, VC Weerakkody, David GreeningDavid Greening, Giuseppe PosterinoGiuseppe Posterino, Robyn MurphyRobyn Murphy, Graham LambGraham Lamb
Nitric oxide is generated in skeletal muscle with activity and decreases Ca2+ sensitivity of the contractile apparatus, putatively by S-nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S-glutathionylation of Cys134 on fast troponin I (TnIf). Force-[Ca2+] characteristics of the contractile apparatus in mechanically skinned fibers were assessed by direct activation with heavily Ca2+-buffered solutions. Treatment with S-nitrosylating agents, S-nitrosoglutathione (GSNO) or S-nitroso-N-acetyl-penicillamine (SNAP), decreased pCa50 ( = −log10 [Ca2+] at half-maximal activation) by ~-0.07 pCa units in rat and human FT fibers without affecting maximum force, but had no effect on rat and human slow-twitch fibers or toad or chicken FT fibers, which all lack Cys134. The Ca2+ sensitivity decrease was 1) fully reversed with dithiothreitol or reduced glutathione, 2) at least partially reversed with ascorbate, indicative of involvement of S-nitrosylation, and 3) irreversibly blocked by low concentration of the alkylating agent, N-ethylmaleimide (NEM). The biotin-switch assay showed that both GSNO and SNAP treatments caused S-nitrosylation of TnIf. S-glutathionylation pretreatment blocked the effects of S-nitrosylation on Ca2+ sensitivity, and vice-versa. S-nitrosylation pretreatment prevented NEM from irreversibly blocking S-glutathionylation of TnIf and its effects on Ca2+ sensitivity, and likewise S-glutathionylation pretreatment prevented NEM block of S-nitrosylation. Following substitution of TnIf into rat slow-twitch fibers, S-nitrosylation treatment caused decreased Ca2+ sensitivity. These findings demonstrate that S-nitrosylation and S-glutathionylation exert opposing effects on Ca2+ sensitivity in mammalian FT muscle fibers, mediated by competitive actions on Cys134 of TnIf.

History

Publication Date

2017-01-01

Journal

American Journal of Physiology: Cell Physiology

Volume

312

Issue

3

Pagination

12p. (p. C316-C327)

Publisher

American Physiological Society

ISSN

0363-6143

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.