La Trobe
- No file added yet -

Recent Advances and Future Perspectives on Microfluidic Mix-and-Jet Sample Delivery Devices

Download (2.07 MB)
journal contribution
posted on 2021-05-12, 00:24 authored by Majid Hejazian, Eugeniu BalaurEugeniu Balaur, Brian AbbeyBrian Abbey
The integration of the Gas Dynamic Virtual Nozzle (GDVN) and microfluidic technologies has proven to be a promising sample delivery solution for biomolecular imaging studies and has the potential to be transformative for a range of applications in physics, biology, and chemistry. Here, we review the recent advances in the emerging field of microfluidic mix-and-jet sample delivery devices for the study of biomolecular reaction dynamics. First, we introduce the key parameters and dimensionless numbers involved in their design and characterisation. Then we critically review the techniques used to fabricate these integrated devices and discuss their advantages and disadvantages. We then summarise the most common experimental methods used for the characterisation of both the mixing and jetting components. Finally, we discuss future perspectives on the emerging field of microfluidic mix-and-jet sample delivery devices. In summary, this review aims to introduce this exciting new topic to the wider microfluidics community and to help guide future research in the field.

History

Publication Date

2021-05-07

Journal

Micromachines

Volume

12

Issue

5

Article Number

531

Pagination

19p.

Publisher

MDPI

ISSN

2072-666X

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC