La Trobe
1160742_Vocale,L_2021.pdf (4 MB)

RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia

Download (4 MB)
journal contribution
posted on 2021-05-03, 06:33 authored by Loretta Giummarra, Sheila CrewtherSheila Crewther, Nina RiddellNina Riddell, Nathan Hall, Melanie MurphyMelanie Murphy, David CrewtherDavid Crewther
Currently there is no consensus regarding the aetiology of the excessive ocular volume that characterizes high myopia. Thus, we aimed to test whether the gene pathways identified by gene set enrichment analysis of RNA-seq transcriptomics refutes the predictions of the Retinal Ion Driven Efflux (RIDE) hypothesis when applied to the induction of form-deprivation myopia (FDM) and subsequent recovery (post-occluder removal). We found that the induction of profound FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABA and GABA ionotropic receptors. Post-occluder removal for short term recovery from FDM of 6 h and 24 h, induced significant upregulation of the gene families linked to cone receptor phototransduction, mitochondrial energy, and complement pathways. These findings support a model of form deprivation myopia as a Cl ion driven adaptive fluid response to the modulation of the visual signal cascade by form deprivation that in turn affects the resultant ionic environment of the outer and inner retinal tissues, axial and vitreal elongation as predicted by the RIDE model. Occluder removal and return to normal light conditions led to return to more normal upregulation of phototransduction, slowed growth rate, refractive recovery and apparent return towards physiological homeostasis. A C −


2007 NHMRC Development Grant and ARC Discovery Project (DP110103784).


Publication Date



Scientific Reports





Article Number

ARTN 5280




Springer Nature



Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles


    No categories selected