Design rules Nature Sci Rep.pdf (1.78 MB)
Download fileQuantitative design rules for protein-resistant surface coatings using machine learning
journal contribution
posted on 2021-07-13, 04:25 authored by Tu C Le, Matthew Penna, David WinklerDavid Winkler, Irene YarovskyPreventing biological contamination (biofouling) is key to successful development of novel surface and nanoparticle-based technologies in the manufacturing industry and biomedicine. Protein adsorption is a crucial mediator of the interactions at the bio – nano -materials interface but is not well understood. Although general, empirical rules have been developed to guide the design of protein-resistant surface coatings, they are still largely qualitative. Herein we demonstrate that this knowledge gap can be addressed by using machine learning approaches to extract quantitative relationships between the material surface chemistry and the protein adsorption characteristics. We illustrate how robust linear and non-linear models can be constructed to accurately predict the percentage of protein adsorbed onto these surfaces using lysozyme or fibrinogen as prototype common contaminants. Our computational models could recapitulate the adsorption of proteins on functionalised surfaces in a test set with an r2 of 0.82 and standard error of prediction of 13%. Using the same data set that enabled the development of the Whitesides rules, we discovered an extension to the original rules. We describe a workflow that can be applied to large, consistently obtained data sets covering a broad range of surface functional groups and protein types.
Funding
TCL thanks RMIT University for the Vice Chancellor's Research Fellowship.
History
Publication Date
2019-01-01Journal
Scientific ReportsVolume
9Issue
1Article Number
265Pagination
12p.Publisher
Springer NatureISSN
2045-2322Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Categories
Keywords
Science & TechnologyMultidisciplinary SciencesScience & Technology - Other TopicsSELF-ASSEMBLED MONOLAYERSPOLYETHYLENE OXIDEFIBRINOGEN ADSORPTIONPOLY(ETHYLENE GLYCOL)COMBINATORIAL LIBRARIESBIODEGRADABLE POLYMERSDESCRIPTOR SELECTIONBLOOD-PLASMAQSAR MODELSPREDICTIONPolymersMuramidaseFibrinogenLinear ModelsEquipment DesignSurface PropertiesModels, ChemicalNanoparticlesImmobilized ProteinsBiofoulingDatasets as TopicMachine Learning