Proteomic and Post‐Translational Modification Profiling of Exosome‐Mimetic Nanovesicles Compared to Exosomes
journal contribution
posted on 2025-10-22, 23:06 authored by Amirmohammad Nasiri KenariAmirmohammad Nasiri Kenari, Kenneth Kastaniegaard, David GreeningDavid Greening, Mitch ShambrookMitch Shambrook, Allan Stensballe, Lesley SimLesley Sim, Andrew HillAndrew Hill© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Issues associated with upscaling exosome production for therapeutic use may be overcome through utilizing artificial exosomes. Cell-derived mimetic nanovesicles (M-NVs) are a potentially promising alternative to exosomes for clinical applicability, demonstrating higher yield without incumbent production and isolation issues. Although several studies have shown that M-NVs have similar morphology, size and therapeutic potential compared to exosomes, comprehensive characterization and to what extent M-NVs components mimic exosomes remain elusive. M-NVs were generated through the extrusion of cells and proteomic profiling demonstrated an enrichment of proteins associated with membrane and cytosolic components. The proteomic data herein reveal a subset of proteins that are highly abundant in M-NVs in comparison to exosomes. M-NVs contain proteins that largely represent the parental cell proteome, whereas the profile of exosomal proteins highlight their endosomally derived origin. This advantage of M-NVs alleviates the necessity of endosomal sorting of endogenous therapeutic proteins or RNA into exosomes. This study also highlights differences in protein post-translational modifications among M-NVs, as distinct from exosomes. Overall this study provides key insights into defining the proteome composition of M-NVs as a distinct from exosomes, and the potential advantage of M-NVs as an alternative nanocarrier when spontaneous endosomal sorting of therapeutics are limited.
Funding
A.N.K. and K.K. contributed equally to this work. This work was supported by grants from the Australian Research Council (DP170102312 to A.F.H). A.N.K. is supported by a La Trobe University Postgraduate Scholarship. The authors acknowledge the La Trobe University-Comprehensive Proteomics Platform for providing infrastructure. The Lundbeck Foundation grant (R247-2017-239) and The Danish National Mass Spectrometry Platform for Functional Proteomics (PRO-MS; grant no. 5072-00007B), the Obel Family Foundation, and the Svend Andersen Foundation are acknowledged for parts of this study.
History
Publication Date
2019-04-01Journal
ProteomicsVolume
19Issue
8Article Number
1800161Pagination
20p. (p. 1800161-1800161)Publisher
WileyISSN
1615-9853Rights Statement
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Nasiri Kenari A, et al (2019). Proteomic and Post‐Translational Modification Profiling of Exosome‐Mimetic Nanovesicles Compared to Exosomes. Proteomics, 19(8), which has been published in final form at http://doi.org/10.1002/pmic.201800161. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Publisher DOI
Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC

