La Trobe

Prevalence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic uninjured adults: a systematic review and meta-analysis

Download (4.62 MB)
journal contribution
posted on 2022-01-31, 06:22 authored by Adam CulvenorAdam Culvenor, Britt Elin Øiestad, Harvi HartHarvi Hart, Joshua J Stefanik, Ali Guermazi, Kay CrossleyKay Crossley
BACKGROUND: Knee MRI is increasingly used to inform clinical management. Features associated with osteoarthritis are often present in asymptomatic uninjured knees; however, the estimated prevalence varies substantially between studies. We performed a systematic review with meta-analysis to provide summary estimates of the prevalence of MRI features of osteoarthritis in asymptomatic uninjured knees. METHODS: We searched six electronic databases for studies reporting MRI osteoarthritis feature prevalence (ie, cartilage defects, meniscal tears, bone marrow lesions and osteophytes) in asymptomatic uninjured knees. Summary estimates were calculated using random-effects meta-analysis (and stratified by mean age: <40 vs ≥40 years). Meta-regression explored heterogeneity. RESULTS: We included 63 studies (5397 knees of 4751 adults). The overall pooled prevalence of cartilage defects was 24% (95% CI 15% to 34%) and meniscal tears was 10% (7% to 13%), with significantly higher prevalence with age: cartilage defect <40 years 11% (6%to 17%) and ≥40 years 43% (29% to 57%); meniscal tear <40 years 4% (2% to 7%) and ≥40 years 19% (13% to 26%). The overall pooled estimate of bone marrow lesions and osteophytes was 18% (12% to 24%) and 25% (14% to 38%), respectively, with prevalence of osteophytes (but not bone marrow lesions) increasing with age. Significant associations were found between prevalence estimates and MRI sequences used, physical activity, radiographic osteoarthritis and risk of bias. CONCLUSIONS: Summary estimates of MRI osteoarthritis feature prevalence among asymptomatic uninjured knees were 4%-14% in adults aged <40 years to 19%-43% in adults ≥40 years. These imaging findings should be interpreted in the context of clinical presentations and considered in clinical decision-making.

Funding

AGC was supported by postdoctoral funding from a European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN; 607510), and is a recipient of a National Health and Medical Research Council (NHMRC) of Australia Early Career Fellowship (Neil Hamilton Fairley Clinical Fellowship, APP1121173). HFH is supported by a NHMRC Project Grant (GNT1106852). JJS is supported by an Institutional DevelopmentAward (IDeA) from the National Institute of General Medical Sciences of theNational Institutes of Health (U54-GM104941). The funders had no role in any part of the study or in any decision about publication.

History

Publication Date

2019-10-01

Journal

British Journal of Sports Medicine

Volume

53

Issue

20

Pagination

12p. (p. 1268-1278)

Publisher

BMJ

ISSN

0306-3674

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC