Phylogenetic analyses to uncover the evolutionary relationship of a newly sequenced mitochondrial genome from an Eastern spinebill (Acanthorhynchus tenuirostris)
The Eastern spinebill (Acanthorhynchus tenuirostris), a passerine bird in the family Meliphagidae (honeyeaters), a dominant group of birds in Australia and New Guinea. The aim of this study was to sequence the complete mitochondrial genome of the Eastern spinebill and use its sequence to better define the phylogeny of this species. The complete mitogenome sequence of A. tenuirostris was circular and 16,614 bp in length, and its architecture was conserved in comparison to other mitogenome sequences under the family Meliphagidae. The Eastern spinebill mitogenome had the highest sequence identity with mitogenome sequences of two other honeyeaters, the white eared honeyeater, Nesoptilotis leucotis, (84.9%) and the white-plumed honeyeater, Ptilotula penicillata (85.5%). The maximum-likelihood topology distinctly discriminated the Eastern spinebill sequence against all other species of the Meliphagidae with significant bootstrap supports. We suggest the widespread sampling and complete mitogenome sequencing would be valuable in establishing the most accurate phylogenetic taxonomy of the family Meliphagidae.
Funding
The authors like to thank La Trobe University for the financial support to S.S. under Start-Up Grant to cover the cost associated with this project.