La Trobe
1167142_Atkin-Smith,G_2021.pdf (984.9 kB)

Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells

Download (984.9 kB)
journal contribution
posted on 01.06.2021, 02:33 by Georgia Atkin-SmithGeorgia Atkin-Smith
Although millions of cells in the human body will undergo programmed cell death each day, dying cells are rarely detected under homeostatic settings in vivo. The swift removal of dying cells is due to the rapid recruitment of phagocytes to the site of cell death which then recognise and engulf the dying cell. Apoptotic cell clearance - the engulfment of apoptotic cells by phagocytes - is a well-defined process governed by a series of molecular factors including 'find-me', 'eat-me', 'don't eat-me' and 'good-bye' signals. However, in recent years with the rapid expansion of the cell death field, the removal of other necrotic-like cell types has drawn much attention. Depending on the type of death, dying cells employ different mechanisms to facilitate engulfment and elicit varying functional impacts on the phagocyte, from wound healing responses to inflammatory cytokine secretion. Nevertheless, despite the mechanism of death, the clearance of dying cells is a fundamental process required to prevent the uncontrolled release of pro-inflammatory mediators and inflammatory disease. This mini-review summarises the current understandings of: (i) apoptotic, necrotic, necroptotic and pyroptotic cell clearance; (ii) the functional consequences of dying cell engulfment and; (iii) the outstanding questions in the field.

History

Publication Date

01/04/2021

Journal

Biochemical Society Transactions

Volume

49

Issue

2

Pagination

(p. 793-804)

Publisher

Portland Press Ltd.

ISSN

0300-5127

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.