La Trobe

Perennial pasture grass invasion changes fire behaviour and recruitment potential of a native forb in a temperate Australian grassland

Download (1.03 MB)
journal contribution
posted on 2022-05-20, 05:43 authored by Zachary WalkerZachary Walker, John MorganJohn Morgan
Invasive grasses can modify fire regimes of native ecosystems leading to changed ecosystem structure, composition, and functioning. Temperate grasslands in Australia are currently being invaded by a suite of exotic perennial pasture grasses, but their effects on ecosystems remain largely unknown. We aimed to determine the effect of invasion by the exotic perennial grass Phalaris aquatica on fire behaviour, as well as the regeneration potential of an endangered forb in temperate native grasslands in south-eastern Australia. Frequently burnt native grasslands invaded by exotic grasses were found to have two times more fuel than grasslands dominated by native grasses; in less-frequently burned native grasslands, exotic grasses contributed to fuel loads that were five times higher than native grasslands. Exotic-dominated grasslands burned differently than native grasslands; fire intensities were three times higher in exotic-dominated grasslands and had a wide variability in fire residence times. Soil heating was positively related to fire residence time but had no clear relationship with fire intensity. Seed germinability of Leucochrysum albicans var. tricolor (Hoary Sunray, Asteraceae) was reduced by exotic grass-fueled fire and increasing fire residence times. The observed changes in fire behaviour represent an invasion-driven shift in the ecosystem’s fire regime. By increasing fuel mass, fire residence time increased, and this influenced seed survival and subsequent germinability. Increased fire intensity following invasion highlights that invasive grasses can increase the fire-risk of grasslands. Maintaining native grasslands free of invasive pasture grasses therefore has environmental and fire-risk benefits.

Funding

Open Access funding enabled and organized by CAUL and its Member Institutions. The authors have not disclosed any funding.

History

Publication Date

2022-01-01

Journal

Biological Invasions

Volume

24

Issue

6

Pagination

11p. (p. 1755-1765)

Publisher

Springer

ISSN

1387-3547

Rights Statement

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC