La Trobe
1206421_Balaur,E_2022.pdf (3.23 MB)
Download file

Optical barcoding using polarisation sensitive plasmonic biosensors for the detection of self-assembled monolayers

Download (3.23 MB)
journal contribution
posted on 2022-10-11, 03:59 authored by Eugeniu BalaurEugeniu Balaur, Catherine Sadatnajafi, Brian AbbeyBrian Abbey
Periodic subwavelength apertures have the ability to passively detect variations in the dielectric properties of the local sample environment through modification of the plasmon resonances associated with these structures. The resulting resonance peak can effectively provide a ‘fingerprint’ indicative of the dielectric properties of the medium within the near-surface region. Here we report on the use of bimodal silver-based plasmonic colour filters for molecular sensing. Firstly, by exploring the optical output of these devices as a function of the incident polarisation for a range of different analytes of known refractive index, we were able to both maximise and quantify their sensitivity. We then apply this concept to the real-time monitoring of the formation of self-assembled monolayers based on detection of the optical output using a spectrometer. This highlights the potential for bimodal plasmonic devices to be able to dynamically monitor variations in the local environment down to the level of single molecules without the need for specific functionalisation or labelling. Advantages of using this technique include the ability for these devices to be miniaturised and to dynamically tailor their optical output permitting the analysis of very small sample volumes and maximise their dynamic range for a specific analyte.


The funding was provided by Australian Research Council (Grant Nos. CE140100011, CE140100011, CE140100011).


Publication Date



Scientific Reports



Article Number





Springer Nature



Rights Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit © Crown 2022

Usage metrics

    Journal Articles


    No categories selected