La Trobe

New evidence for the sensorimotor mismatch theory of weight perception and the size-weight illusion

Download (2.27 MB)
journal contribution
posted on 2024-07-08, 07:34 authored by Jarrod HarrisJarrod Harris, Elizabeth J Saccone, Rebecca Chong, Gavin Buckingham, Melanie MurphyMelanie Murphy, Philippe ChouinardPhilippe Chouinard

Abstract: The size-weight illusion is a phenomenon where a smaller object is perceived heavier than an equally weighted larger object. The sensorimotor mismatch theory proposed that this illusion occurs because of a mismatch between efferent motor commands and afferent sensory feedback received when lifting large and small objects (i.e., the application of too little and too much lifting force, respectively). This explanation has been undermined by studies demonstrating a separation between the perceived weight of objects and the lifting forces that are applied on them. However, this research suffers from inconsistencies in the choice of lifting force measures reported. Therefore, we examined the contribution of sensorimotor mismatch in the perception of weight in the size-weight illusion and in non-size-weight illusion stimuli and evaluated the use of a lifting force aggregate measure comprising the four most common lifting force measures used in previous research. In doing so, the sensorimotor mismatch theory was mostly supported. In a size-weight illusion experiment, the lifting forces correlated with weight perception and, contrary to some earlier research, did not adapt over time. In a non-size-weight illusion experiment, switches between lifting light and heavy objects resulted in perceiving the weight of these objects differently compared to no switch trials, which mirrored differences in the manner participants applied forces on the objects. Additionally, we reveal that our force aggregate measure can allow for a more sensitive and objective examination of the effects of lifting forces on objects.

Funding

This work was supported by the Australian Research Council (DP170103189).

History

Publication Date

2024-07-01

Journal

Experimental Brain Research

Volume

242

Issue

7

Pagination

21p. (p. 1623-1643)

Publisher

Springer Nature

ISSN

0014-4819

Rights Statement

© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC