La Trobe

Multi-state energy classifier to evaluate the performance of the NILM algorithm

With the large-scale deployment of smart meters worldwide, research in non-intrusive load monitoring (NILM) has seen a significant rise due to its dual use of real-time monitoring of end-user appliances and user-centric feedback of power consumption usage. NILM is a technique for estimating the state and the power consumption of an individual appliance in a consumer’s premise using a single point of measurement device such as a smart meter. Although there are several existing NILM techniques, there is no meaningful and accurate metric to evaluate these NILM techniques for multi-state devices such as the fridge, heat pump, etc. In this paper, we demonstrate the inadequacy of the existing metrics and propose a new metric that combines both event classification and energy estimation of an operational state to give a more realistic and accurate evaluation of the performance of the existing NILM techniques. In particular, we use unsupervised clustering techniques to identify the operational states of the device from a labeled dataset to compute a penalty threshold for predictions that are too far away from the ground truth. Our work includes experimental evaluation of the state-of-the-art NILM techniques on widely used datasets of power consumption data measured in a real-world environment.

Funding

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019M3F2A1073179).

History

Publication Date

2019-12-01

Journal

Sensors

Volume

19

Issue

23

Article Number

5236

Pagination

17p.

Publisher

Multidisciplinary Digital Publishing Institute

ISSN

1424-8220

Rights Statement

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).