La Trobe

Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

Download (815.24 kB)
journal contribution
posted on 2021-01-06, 05:09 authored by Jennifer WoodJennifer Wood, C Zhang, Elizabeth MathewsElizabeth Mathews, Caixian TangCaixian Tang, Ashley FranksAshley Franks
© The Author(s) 2016. Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

Funding

This research was supported by the Australian Research Council Linkage Grants (LP140100459 and LP100100800). A.E.F. is also supported by Defense Science Institute, Office of Naval Research Global, Award No N626909-13-1-N259 and AOARD award FA2386-14-1-4032.

History

Publication Date

2016-11-02

Journal

Scientific Reports

Volume

6

Issue

1

Article Number

36067

Pagination

10p.

Publisher

Nature Publishing Group

ISSN

2045-2322

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.