La Trobe

Mechanical Behaviour Evaluation of Porous Scaffold for Tissue-Engineering Applications Using Finite Element Analysis

journal contribution
posted on 2022-08-12, 07:27 authored by Akesh Babu Kakarla, Ing KongIng Kong, Satya Guha NukalaSatya Guha Nukala, W Kong
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous scaffolds are determined through FEA, studies on the polymer nanocomposite porous scaffolds are limited. In this paper, FEA with the integration of material designer and representative volume elements (RVE) was carried out on a 3D scaffold model to determine the mechanical properties of boron nitride nanotubes (BNNTs)-reinforced gelatin (G) and alginate (A) hydrogel. The maximum stress regions were predicted by FEA stress distribution. Furthermore, the analysed material model and the boundary conditions showed minor deviation (4%) compared to experimental results. It was noted that the stress regions are detected at the zone close to the pore areas. These results indicated that the model used in this work could be beneficial in FEA studies on 3D-printed porous structures for tissue engineering applications.

History

Publication Date

2022-02-01

Journal

Journal of Composites Science

Volume

6

Issue

2

Article Number

46

Pagination

10p.

Publisher

MDPI

ISSN

2504-477X

Rights Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC