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Abstract: The rapid growth and uptake of network-based communication
technologies have made cybersecurity a significant challenge as the number of
cyber-attacks is also increasing. A number of detection systems are used in an
attempt to detect known attacks using signatures in network traffic. In recent
years, researchers have used different machine learning methods to detect
network attacks without relying on those signatures. The methods generally
have a high false-positive rate which is not adequate for an industry-ready
intrusion detection product. In this study, we propose and implement a new
method that relies on a modular deep neural network for reducing the false
positive rate in the XSS attack detection system. Experiments were performed
using a dataset consists of 1000 malicious and 10000 benign sample. The
model uses 50 features selected by using Pearson correlation method and will
be used in the detection and preventions of XSS attacks. The results obtained
from the experiments depict improvement in the detection accuracy as high as
99.96% compared to other approaches.

Keywords: Cybersecurity; XSS; deep learning; modular neural network

1 Introduction

The number of web services is growing exponentially. Web applications which are accessed
via web browsers have become primary targets for cybercriminals [1,2]. A report published by
Symantec Corporation in 2019 implies that 439 million pieces of new varieties of malware were
identified [3], With the distinct nature and behavior among the cybercriminals and cybersecurity
solution provides to defend attacks thus making it very is challenging for cybersecurity defenders
to discover in what manner the new kind of malware will appear [4]. The objective of conduct-
ing such types of attacks by cybercriminals is for individual, monetary and political benefits.
Therefore, early detection of such malware attacks has emerged as the uppermost cybersecurity
challenge.
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The Open Web Applications Security Project (OWASP) has declared Cross-site scripting (XSS)
as one of the top vulnerabilities which are exploited to perform attacks [5]. XSS attacks are mali-
cious script code attacks which are injected into malicious or legitimate and trusted websites [6].
These malicious scripts are delivered illegitimately to the user’s machine so that vulnerabilities are
exploited in web applications, and attacks are performed. Mostly these malicious payloads are
delivered to users through email attachments or on visiting a compromised website. Cybercriminals
commit a breach on the legitimate but vulnerable website to infuse the malicious script inside
or develop a phishing website. Poor programming practices which such as not covering all the
security aspects is one of the significant causes of vulnerability in a web application [7]. Malicious
JavaScript is often employed to perform XSS attacks. JavaScript being a scripting language has
several advantages which include adding versatility, dynamism, interactive into the webpages.
A significant advantage of using JavaScript is that it reduces the computation load on the server-
side but executing the scripts on users’ side through a web browser [8]. JavaScript offers several
advantages; however, the downside is that it provides a solid foundation to conduct the XSS
attack. These attacks are performed on the users’ side, which is executed by the web browsers, but
there is no mechanism in web browsers for detecting any malicious scripts. Web browsers run all
the scripts sent by the server, whether malicious or benign. Execution of malicious JavaScript by
web browser may lead to user session hijacking, manipulating the legitimate website, for example
by injecting malicious code or content or phishing attacks [9].

Deep learning as a new field of research is a subset of machine learning and works on
by imitating forming of connections in a human brain modelled as neural networks, and also
been applied to detect malware [10]. With the Neural Network’s advancement, the problems of
previous machine learning approaches in terms of accuracy in malware detection have increased.
The likelihood of enhanced classification accuracy appears by developing a neural network with
a higher number of prospect layers, also known as deep learning. Preliminary studies in deep
learning that have been employed to detect malware in Android mobiles confirm that malware was
detected with high accuracy [11]. In this study, we propose using network-based neural networks
to detect malicious XSS code attacks.

The motivation of using the Deep Neural Network (DNN) for the detection of XSS attacks is
to remove the necessity of domain expertise in feature extraction, remove complexity and solve the
problem end to end. A modular neural network works on the concept of implementing multiple
individual neural networks. These neural networks are trained instantaneously for a particular
subtask and the results achieved are combined to perform the single task.

The major contribution of this study is the widespread use of the Word2vec model for the
detection of malicious JavaScript’s using MNN. Our meticulous experiments using the Word2vec
model and MNN reveals a much better performance. None of the existing studies has successfully
employed Word2Vec and MNN to show this degree of performance. Hence determine that our
method is an effective method for detecting malicious JavaScript attacks.

The rest of the paper is organized as: Section 2 gives the details about related work. In
Section 3 the overview of the proposed approach is detailed. In Section 4 experimental details
and evaluation are presented. Section 5 concludes the work.

2 Related Work

Existing solutions [12,13] for detection of malicious code attacks are broadly based on two
approaches: signature-based and heuristic-based. In the signature-based approach, the malicious
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script’s detection is performed by comparing the unique string patters in the binary code. The
unique strings are created from previously captured instances of malicious code. A security solu-
tion based on signature-based needs frequently updates of their database with new signatures [14].
There is a huge time gap between finding the new malware variant and updating the signature
of the malware into the database on the client-side. The attackers take benefit of such time gap
to launch the attack and may affect millions of devices. Signature-based approach for malware
detection fails in such an environment where new malware variants are expected to arrive.

Another approach used for the detection of malware is heuristic-based detection [15]. In
a heuristic-based approach, the detection is performed using an expert system based on expert
decision rules. Based on the set criterion, the expert system will decide whether a piece of code
is suspicious or benign. The major downside of this approach is the long scanning time deciding
whether a code is malicious or benign. Another challenge with this approach is that it has a high
false-positive rate. To overcome the challenges in signature-based and heuristic-based detection
approaches such as of high false-positive rate, long scanning time, frequent updating of signatures
at the client-side, researchers use machine learning.

Several alternative approaches have been proposed to detect malicious JavaScript attacks using
machine learning and non-machine learning methods. In this section, the machine learning and
deep learning-based approaches for detecting malicious code attacks are reviewed related to our
approach. As a study by [16], proposed and implemented an approach for the detection of
malicious code-based N-gram, and the classification was performed using SVM. N-gram was
used to generate N tokens consecutively in a stream for feature extraction. The experiments were
conducted using 1831 instances of SQL injection and XSS. The experimental result shows that
precision of 98.04% was obtained with a true false positive of 0.985% and a false positive rate
of 0.015% when used on trigram. The downside of this approach is that the tokenizers need
constant training to detect malicious code. A study by [17], used machine learning classifiers such
as SVM, Naïve Bayes, J48 and bagging for the classification of malicious and benign code. The
features extracted from the user-input context were used along with some basic features partic-
ularly related to input, output, validation, and sanitization routines. Experimental results show
that an accuracy of 92.6% was achieved using bagging. Shar et al. [18] proposed a predication
model for detection on XSS vulnerabilities based on machine learning classification and clustering
techniques. Hybrid attributes extracted using static and dynamic analysis were used for code for
vulnerability prediction. The experiment was performed on six applications, and results show that
an average of 90% recall and 85% precision was obtained. The downside of the approach is that it
has huge performance overheads and high false positive rate. A study by Fang et al. [19] presented
an approach for detecting XSS using deep learning. In this study the features were extracted
from XSS payload. They used Long Short-Term Memory (LSTM) recurrent neural network for
detection. Experimental results show that precision of 99.5% was achieved. The downside of
this approach is that it has a high time complexity. A study by Stokes et al. [20] proposed and
implemented a deep recurrent neural for the detection of malicious JavaScript’s. A hybrid of static
and dynamic analysis was used. The presented model is highly complex, and the results produced
are not convincing. Experimental results show that the applied LaMP model achieved a 65.9%
true positive rate, and the best CPoLS model obtained 45.3% true positive rate, with 1.0% as a
false positive rate.
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3 Proposed Approach

3.1 Overview
Our new proposed approach for the detection of malicious JavaScript is based on deep and

modular neural network. The proposed approach works on a self-learning method capable of
detecting known and unknown variants of malware. The property of using a system which is
self-learning and utilised machine learning and deep learning models that enables to extract the
convoluted features from the code snippets to differentiate between the benign and malware code.
The processes involved in this detection approach is shown in Fig. 1.

Figure 1: Architecture of the proposed approach

3.2 Pre-Processing
The pre-processing in this approach includes decoding, generalisation and tokenizing. The

first step towards detecting malicious XSS is performing decoding on the code segment, which
needs to be tested for malicious or benign. The attacker’s use obfuscation techniques to evade the
detection bypassing the traditional filters and validation mechanisms. The obfuscation or encoding
is done through techniques such as Unicode, Hex encoding Base64, UTF-7 encoding. Using all
the possibilities, in this proposed approach the decoder will decode data and will bring the code to
a normal format. The second step in pre-processing is generalisation. This step involves removing
the data noise, meaningless and non-helpful information from the decoded code, and the from the
normal code. The generalisation includes removing black spaces, special characters, http://, and
conversion of function parameters to param_strings. The third step is performing the tokenizing
on the data. The purpose of using tokenization here is to break the sequence of strings into pieces
involving input characters, sub-characters, or subgroups. Another benefit of using tokenization
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is that it minimizes the length of data and reduces the complexity, leading to lessens the data
handling cost. In tokenization only important word remain therefore increasing the accuracy.

3.3 Word2vec and CBOWModel
In this approach, we have considered each code instances as a plain text and treating it

like a natural language. For this purpose, we use word2vec [21]. Word2vec algorithm employs a
neural network model to learn associations of words from the large text corpus. Once the model
is trained; it will help detect the synonymous words and recommend some extra words. As the
name indicates, word2vec shows every distinct word with a specific list of numbers towards a
vector. The vectors are selected so that a simple mathematical cosine function will depict the
words represented by those vectors. Continuous bag of words (CBOW) and continuous skip
gram are two models which word2vec can use to generate distributed representations of words.
CBOW architecture model is usually considered much faster than skip gram for construct word
representation. Keeping in view of the efficiency, In this study we employed CBOW model.
Fig. 2 [22] shows depicts the architecture of CBOW.

Figure 2: Architecture of CBOW model [22]

3.4 Feature Selection
Feature selection is a method in which the number of the features are reduced as input

variables for generating a predictive model [23]. The objective of feature selection is to reduce
the computational cost and performance overheads and enhance a model’s prediction accuracy.
Suppose we have a feature vector F, we have to find the most optimal feature set F’, keeping in
mind that not all the features will contribute to the prediction model’s accuracy.

Given a set of features F = {f _(1, ) f _(2 ) . . . f _(n ), find the subset F ′ ⊆ F which will maximise
the learner’s ability to classify patterns.
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In this study we used Pearson’s Correlation method which is a filter-based selection
method [24]. Pearson’s Correlation method is useful in determining the association among the
continuous features and the class [25]. The mathematical representation is shown in Eq. (1).

r=
⎛
⎝∑ [((x− x̄)(y− ȳ))]√∑

(x− x̄)2
∑

(y− ȳ)2

⎞
⎠ (1)

Only top n features are selected in our dataset by determining the absolute value of cor-
relation among the target and numerical features. The high association was calculated by using
‘CorrelationAttributeEval’ package in WEKA [26]. The selected features are given in Tab. 1.

Table 1: Selected feature list

Feature number Feature name Feature number Feature name

1 url_length 26 html_attr_profile
2 url_special_characters 27 html_attr_http-equiv
3 url_tag_script 28 html_event_onblur
4 url_attr_src 29 html_event_onchange
5 url_event_onload 30 html_event_onclick
6 url_event_onmouseover 31 html_event_onerror
7 url_cookie 32 html_number_keywords_evil
8 url_number_keywords_param 33 js_file
9 url_number_domain 34 js_pseudo_protocol
10 html_tag_script 35 js_dom_location
11 html_tag_iframe 36 js_dom_document
12 html_tag_meta 37 js_prop_cookie
13 html_tag_object 38 js_method_write
14 html_tag_embed 39 js_method_getElementById
15 html_tag_link 40 js_method_alert
16 html_tag_svg 41 js_method_eval
17 html_tag_frame 42 js_method_fromCharCode
18 html_tag_div 43 js_min_length
19 html_tag_style 44 js_min_define_function
20 html_tag_img 45 js_min_function_calls
21 html_tag_input 46 js_string_max_length
22 html_attr_classid 47 html_length
23 html_attr_codebase 48 js_method_getElementsByTagName
24 html_attr_href 49 js_prop_referrer
25 html_attr_longdesc 50 html_event_onmouseup

3.5 Deep and Modular Neural Network
The last step in this detection approach is using modular neural network (MNN) to detect

malicious JavaScript’s. MNN is considered one of the most influential and independent artificial
neural networks, which is changed with only a few intermediate values [27]. MNN are neural
networks which symbolize the ideas and principles of modularity. The property of using the
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modularity is that it can be broken down into several generally free, replicable, and composite
modules. MNN reduces the computational complexity and enhances system performance and
robustness [28]. The results obtained have been highly desirable than monolithic system which
is based on a rigid structure. The input features are analysed by MNN, which further breaks
down features into sub-features and each network is processed independently. During the process,
the output generated from individual networks are consumed by the intermediary process as an
input to generate the final output. The intermediary process has a characteristic of taking each
process individually and perform the required action without getting distracted from other signals
and doesn’t interrelate without other networks. Basically, the strategy used by MNN to solve
the problem is based on “divide and conquer method” [29]. MNN divides the highly complex
task into a multiple subtask and each subtask is handled individually by each module. The
solution produced from subtasks are combined through a unified multi module decision making
strategy. Keeping in view of the advantages of using modular network, in this study optimised
neural network is implemented for the detection of malicious JavaScript code attacks. Fig. 3 [30],
depicts the basic structure of MNN and considered as a collection of monolithic neural networks
that each deal with a subset of a problem and then have their separate outputs merged by an
integration unit to form a comprehensive solution to the entire issue. The basic principle is that
a complex problem can be broken down into simpler subsets that simpler neural networks can
solve. The entire solution can be a blend of the outputs of the simple monolithic neural networks.

Figure 3: Basic structure of MNN [30]

The output “O” generated by each independent network is combined to produce the final
optimised output and is mathematically represented as given in Eq. (2). The presence or absence
of the module is known through the coefficient of the network module.

O=
∑n

i=1 a
2
i giki∑n

i=1 gi
(2)

where, a2i = Module output in which i ∈ [1, 2, . . .n], gi = Average deviation of the generated output
by module i, ki = Coefficient of module i.

In this proposed approach for XSS detection using MNN, each module in neural network
takes as its input from the dataset. Each module in this study a 2-layer multilayer preceptor
where the output generated by the second layer on the neural network is a2i (for i ∈ (1, . . . ,n)),
where n is the maximum number of modules. In this study we are using 2 modules as given in
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Fig. 4 and module integration is done using Eq. (2). The reason of selecting only 2 modules is
to simplify calculations. The output generated by modules is given as input to module integrator
for making the final decision. The integrator works based on a threshold for deciding whether a
code is malicious or benign. If the module integrator generated an output greater than 0.5 the
code is classified as malicious, and if it is less than 0.5 the code is benign as shown in Fig. 5.
The efficiency of the proposed approach is evaluated using experimental results.

Figure 4: Modular neural network with 2 modules

Figure 5: Working of module integrator

4 Experimental Setup

4.1 Dataset
The dataset used in this study was obtained from figshare.com [31] developed by authors [32].

The dataset consists of 101000 instances with 1000 as malicious and 100000 benign instances.
The dataset contains 67 features based on three categories viz HTML, JavaScript, and URL. The
sample class is represented by [0, 1], 0 for benign and 1 for malicious benign.

4.2 Experimental Environment & Evaluation
The experiments to confirm the effectiveness of this approach was conducting on i5, 3.5 Ghz,

8 GB RAM. MATLAB platform was used to develop and experiment modular neural network.
WEKA was used for the feature selection based on Pearson correlation. In first the dataset
obtained was divided into 80% training and 20% testing data. Further 10-fold cross validation
scheme was used for resampling of the data and generate predictions from unseen data. In this
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study only 50 features were selected based on Pearson correlation among the total of 68 features
as given in the main dataset. The features selected are given in Tab. 1. To compare the results
generated from proposed modular neural network we used two approach: Backpropagation Neural
Network (BPNN) and Radial Basis Function Network (RBFN) on the same data using same
parameters. The only change was the number of features selected. in both approach we used
25 features each. The first 25 features were used in Backpropagation Neural Networking and
second 25 features were used in and Radial Basis Function Network. The hidden layer in our
experiments was set 20 and the activation function used were “tansig” and “purelin”. The training
was continued till 500 epochs to achieve best accuracy result without any additional performance
overheads. The confusion matric was used as for basic evaluation. Accuracy, Precision, Recall and
F-1 score was measured in this study. These evaluation metrics are widely known and accepted
by the research community. The formula for calculating each metrics is given in Eqs. (3)–(5)
respectively. The results obtained are given in Tab. 2.

Accuracy= TP+TN
TP+TN +FP+FN

(3)

Precison= TP
TP+FP

(4)

Recall= TP
TP+FN

(5)

F1= 2 ∗ Precison ∗Recall
Precison+Recall

(6)

where, TP = True Positive, TN = True Negative, FP = False Positive, FN = false Negative.

Table 2: Experimental results and comparison with other methods

Metrices Methods

BPNN RBFN Proposed MNN

Benign Malicious Benign Malicious Benign Malicious

Accuracy (%) 98.66 97.34 99.96
Precision (%) 96.95 100 95 100 99.95 99.95
Recall (%) 100 96.38 100 92.0 100 99.91
F1-score (%) 98.32 97 96.45 95.67 99.95 99.92

Based on the insight obtained from the experimental results it is evident that our proposed
MNN achieved an accuracy of 99.96% which was high compared to BPNN and RBFN which
achieved 98.66% and 97.34% respectively using all the features mentioned in Tab. 1. An increase
of 1% in any detection approach means hundreds of attackers can be detected. Thus, the proposed
MNN-XSS approach has proven to be highly effective in detecting XSS attacks.
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5 Conclusion

In this study, we propose MNN for XSS detection and conducted experiments. The exper-
imental results show that the proposed approach achieved an accuracy of 99.96% in detecting
novel malicious JavaScript based XSS attack upon learning. The selection of number on neurons
is one of the main paraments that are required to be specified the realization of the MNN. This
further leads to decrease in complexity and thus allows implementation of neural network with
limited resources. The Pearson correlation played an important role in feature selection thus lead
to the higher accuracy.
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