La Trobe
145759_Flanagan,D_2017.pdf (8.42 MB)

Loss of the Wnt receptor frizzled 7 in the mouse gastric epithelium is deleterious and triggers rapid repopulation in vivo

Download (8.42 MB)
journal contribution
posted on 2023-04-26, 06:04 authored by Dustin J Flanagan, Nick Barker, Cameron Nowell, Hans Clevers, Matthias ErnstMatthias Ernst, Toby J Phesse, Elizabeth Vincan
The gastric epithelium consists of tubular glandular units, each containing several differentiated cell types, and populations of stem cells, which enable the stomach to secrete the acid, mucus and various digestive enzymes required for its function. Very little is known about which cell signalling pathways are required for homeostasis of the gastric epithelium. Many diseases, such as cancer, arise as a result of deregulation of signalling pathways that regulate homeostasis of the diseased organ. Therefore, it is important to understand the biology of how normal conditions are maintained in a tissue to help inform the mechanisms driving disease in that same tissue, and to identify potential points of therapeutic intervention. Wnt signalling regulates several cell functions, including proliferation, differentiation and migration, and plays a crucial role during homeostasis of several tissues, including the intestinal epithelium. Wnt3a is required in the culture medium of gastric organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this has not been investigated in vivo. Here, we show that the Wnt receptor frizzled 7 (Fzd7), which is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is required for gastric organoid growth. Gastric-specific loss of Fzd7 in the adult gastric epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe is the first observation of this novel function for this tissue. Taken together, these data provide functional evidence of a crucial role for Wnt signalling, via the Fzd7 receptor, during homeostasis of the gastric epithelium.

History

Publication Date

2017-08-01

Journal

Disease Models and Mechanisms

Volume

10

Issue

8

Pagination

10p. (p. 971-980)

Publisher

The Company of Biologists Ltd

ISSN

1754-8403

Rights Statement

© 2017. Published by The Company of Biologists Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Usage metrics

    Journal Articles

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC