- No file added yet -
Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems
journal contribution
posted on 2021-01-15, 02:18 authored by Z Dai, G Liu, H Chen, C Chen, J Wang, S Ai, D Wei, D Li, B Ma, Caixian TangCaixian Tang, PC Brookes, Jianming Xu© 2019, The Author(s). Microorganisms play an important role in soil phosphorus (P) cycling and regulation of P availability in agroecosystems. However, the responses of the functional and ecological traits of P-transformation microorganisms to long-term nutrient inputs are largely unknown. This study used metagenomics to investigate changes in the relative abundance of microbial P-transformation genes at four long-term experimental sites that received various inputs of N and P nutrients (up to 39 years). Long-term P input increased microbial P immobilization by decreasing the relative abundance of the P-starvation response gene (phoR) and increasing that of the low-affinity inorganic phosphate transporter gene (pit). This contrasts with previous findings that low-P conditions facilitate P immobilization in culturable microorganisms in short-term studies. In comparison, long-term nitrogen (N) input significantly decreased soil pH, and consequently decreased the relative abundances of total microbial P-solubilizing genes and the abundances of Actinobacteria, Gammaproteobacteria, and Alphaproteobacteria containing genes coding for alkaline phosphatase, and weakened the connection of relevant key genes. This challenges the concept that microbial P-solubilization capacity is mainly regulated by N:P stoichiometry. It is concluded that long-term N inputs decreased microbial P-solubilizing and mineralizing capacity while P inputs favored microbial immobilization via altering the microbial functional profiles, providing a novel insight into the regulation of P cycling in sustainable agroecosystems from a microbial perspective.
History
Publication Date
2020-03-01Journal
The ISME Journal: multidisciplinary journal of microbial ecologyVolume
14Issue
3Pagination
14p. (p. 757-770)Publisher
Springer NatureISSN
1751-7362Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Keywords
Science & TechnologyLife Sciences & BiomedicineEcologyMicrobiologyEnvironmental Sciences & EcologyNITROGEN-FERTILIZATIONBACTERIAL COMMUNITIESPHOSPHATE SOLUBILIZATIONALKALINE-PHOSPHATASEGENE-EXPRESSIONFOREST SOILSBIOMASSPHODRESPONSESMETAGENOMICSBacteriaNitrogenPhosphorusSoilSoil MicrobiologyNutrients
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC