La Trobe
1168958_Pedram,S_2021.pdf (1.6 MB)

Lessons Learned From Immersive and Desktop VR Training of Mines Rescuers

Download (1.6 MB)
journal contribution
posted on 2021-07-12, 23:46 authored by Shiva Pedram, Richard SkarbezRichard Skarbez, Stephen Palmisano, Matthew Farrelly, Pascal Perez
This paper discusses results from two successive rounds of virtual mines rescue training. The first round was conducted in a surround projection environment (360-VR), and the second round was conducted in desktop virtual reality (Desktop-VR). In the 360-VR condition, trainees participated as groups, making collective decisions. In the Desktop-VR condition, trainees could control their avatars individually. Overall, 372 participants took part in this study, including 284 mines rescuers who took part in 360-VR, and 243 in Desktop-VR. (155 rescuers experienced both.) Each rescuer who trained in 360-VR completed a battery of pre- and post-training questionnaires. Those who attended the Desktop-VR session only completed the post-training questionnaire. We performed principal components analysis on the questionnaire data, followed by a multiple regression analysis, the results of which suggest that the chief factor contributing to positive learning outcome was Learning Context, which extracted information about the quality of the learning content, the trainers, and their feedback. Subjective feedback from the Desktop-VR participants indicated that they preferred Desktop-VR to 360-VR for this training activity, which highlights the importance of choosing an appropriate platform for training applications, and links back to the importance of Learning Context. Overall, we conclude the following: 1) it is possible to train effectively using a variety of technologies but technology that is well-suited to the training task is more useful than technology that is “more advanced,” and 2) factors that have always been important in training, such as the quality of human trainers, remain critical for virtual reality training.

History

Publication Date

2021-02-26

Journal

Frontiers in Virtual Reality

Volume

2

Article Number

627333

Pagination

(p. 1-14)

Publisher

Frontiers Media

ISSN

2673-4192

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.