Purpose: The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with 124I to support clinical development using immuno-positron emission tomography (PET). Methods: The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of 124I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. Results: Biodistribution studies using xenografts at 72 hours post injection showed that 131I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to 111In-CHX-A″-DTPA-ch806. 125I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled 125I-ch806. 124I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for 124I-PEG4-tptddYddtpt-ch806 was similar to 111In-CHX-A″-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. Conclusions: The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as 124I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported in part by NHMRC Project grant 1003085 and NHMRC Program grant 487922. Operational Infrastructure Support Program funding was provided by the Victorian Government and funds to purchase the imaging equipment was provided by the Australian Cancer Research Foundation.
History
Publication Date
2016-01-01
Journal
Molecular Imaging
Volume
15
Pagination
9p. (p. 1-9)
Publisher
SAGE
ISSN
1536-0121
Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.