Fraxin (FX) (7-hydroxy-6-methoxycoumarin 8-glucoside) is a typical natural product of the coumarin family. This compound was shown to protect endothelial cells from oxidative stress; however, the nature of its antioxidant properties is still ambiguous. In this study, we report on a systematic evaluation of the radical scavenging activity of FX using a two-tier protocol based on thermodynamic and kinetic calculations. The results show that FX has moderate activity in the aqueous physiological environment against a range of radicals including HO, CCl3O, CCl3OO, NO2, and HOO. The latter was examined in detail due to the prevalence of HOO as a source of oxidative stress in biological systems. HOO scavenging activity was promising in the gas phase but low in physiological environments with koverall = 1.57 × 106, 3.13 × 102 and 2.68 × 103 M-1 s-1 in the gas phase, pentyl ethanoate and water solvents, respectively. The formal hydrogen transfer mechanism at the O7-H bond dominates the hydroperoxyl radical scavenging of FX in the nonpolar media, whereas, in the polar environment, the activity is exerted by the single electron transfer mechanism of the anion state. This activity falls behind typical antioxidants such as Trolox, ascorbic acid, and trans-resveratrol under the studied conditions. Thus FX may have multiple health benefits, but it is not an outstanding natural antioxidant. This journal is
History
Publication Date
2021-04-02
Journal
RSC Advances
Volume
11
Issue
24
Pagination
(p. 14269-14275)
Publisher
Royal Society of Chemistry (RSC)
Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.