La Trobe
- No file added yet -

Interplay between Mg2+ and Ca2+ at multiple sites of the ryanodine receptor

Download (8.27 MB)
journal contribution
posted on 2024-08-16, 03:22 authored by AR Nayak, W Rangubpit, AH Will, Y Hu, P Castro-Hartmann, JJ Lobo, K Dryden, Graham LambGraham Lamb, P Sompornpisut, M Samsó

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.

History

Publication Date

2024-05-15

Journal

Nature Communications

Volume

15

Article Number

4115

Pagination

15p.

Publisher

Springer Nature

ISSN

2041-1723

Rights Statement

© The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC