La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms

journal contribution
posted on 19.01.2021, 06:33 by William Wing Ho Ho, Camilla B Hill, Monika Doblin, Megan C Shelden, Allison van de Meene, Thusitha Rupasinghe, Tony Bacic, Ute Roessner
The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.

History

Publication Date

11/05/2020

Journal

Plant communications

Volume

1

Issue

3

Article Number

100031

Pagination

17p. (p. 1-17)

Publisher

Cell Press

ISSN

2590-3462

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

Journal Articles

Categories

Exports