La Trobe

Insight into the RssB-mediated recognition and delivery of σs to the AAA+ protease, ClpXP

journal contribution
posted on 2025-01-24, 05:01 authored by Dimce Micevski, Kornelius Zeth, Terrence D Mulhern, Verena J Schuenemann, Jessica ZammitJessica Zammit, Kaye TruscottKaye Truscott, David DouganDavid Dougan
In Escherichia coli, SigmaS (σs) is the master regulator of the general stress response. The cellular levels of σs are controlled by transcription, translation and protein stability. The turnover of σs, by the AAA+ protease (ClpXP), is tightly regulated by a dedicated adaptor protein, termed RssB (Regulator of Sigma S protein B)—which is an atypical member of the response regulator (RR) family. Currently however, the molecular mechanism of σs recognition and delivery by RssB is only poorly understood. Here we describe the crystal structures of both RssB domains (RssBN and RssBC) and the SAXS analysis of full-length RssB (both free and in complex with σs). Together with our biochemical analysis we propose a model for the recognition and delivery of σs by this essential adaptor protein. Similar to most bacterial RRs, the N-terminal domain of RssB (RssBN) comprises a typical mixed (βα)5-fold. Although phosphorylation of RssBN (at Asp58) is essential for high affinity binding of (σs, much of the direct binding to σs occurs via the C-terminal effector domain of RssB (RssBC). In contrast to most RRs the effector domain of RssB forms a β-sandwich fold composed of two sheets surrounded by α-helical protrusions and as such, shares structural homology with serine/threonine phosphatases that exhibit a PPM/PP2C fold. Our biochemical data demonstrate that this domain plays a key role in both substrate interaction and docking to the zinc binding domain (ZBD) of ClpX. We propose that RssB docking to the ZBD of ClpX overlaps with the docking site of another regulator of RssB, the anti-adaptor IraD. Hence, we speculate that docking to ClpX may trigger release of its substrate through activation of a "closed" state (as seen in the RssB-IraD complex), thereby coupling adaptor docking (to ClpX) with substrate release. This competitive docking to RssB would prevent futile interaction of ClpX with the IraD-RssB complex (which lacks a substrate). Finally, substrate recognition by RssB appears to be regulated by a key residue (Arg117) within the α5 helix of the N-terminal domain. Importantly, this residue is not directly involved in σs interaction, as σs binding to the R117A mutant can be restored by phosphorylation. Likewise, R117A retains the ability to interact with and activate ClpX for degradation of σs, both in the presence and absence of acetyl phosphate. Therefore, we propose that this region of RssB (the α5 helix) plays a critical role in driving interaction with σs at a distal site.

Funding

This work was funded by ARC Discovery Project DP110103936.

History

Publication Date

2020-04-16

Journal

Biomolecules

Volume

10

Issue

4

Article Number

615

Pagination

25p.

Publisher

Multidisciplinary Digital Publishing Institute

ISSN

2218-273X

Rights Statement

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC