- No file added yet -
Increased microbial activity contributes to phosphorus immobilization in the rhizosphere of wheat under elevated CO2
journal contribution
posted on 2021-01-05, 05:01 authored by Jian JinJian Jin, Caixian TangCaixian Tang, A Robertson, Ashley FranksAshley Franks, Roger ArmstrongRoger Armstrong, Peter SalePeter SaleUnderstanding phosphorus (P) transformation in the rhizosphere affected by elevated CO2 (eCO2) needs to underpin the plant-derived C flow and P relationship in the plant-soil-microbe continuum. A pot experiment was conducted in CO2-controlled environmental cabinets. Wheat (Triticum aestivum) plants were grown in a P-sufficient Vertisol soil and exposed to 380 or 800ppm CO2 for 6 weeks. Plants were labelled with 13CO2 under respective CO2 treatments. Elevated CO2 increased NaHCO3- and NaOH-extractable organic P (Po) in the rhizosphere by 160% and 53%, respectively. Consistently, eCO2 increased microbial C and respiration in the rhizosphere. Furthermore, the excess of 13C atom in roots and rhizosphere soil, but not in shoots, were markedly higher under eCO2 than aCO2. Elevated CO2 increased the copy number of bacterial 16S rDNA from 13C-DNA and 12C-DNA fractions. Although the copy number of fungal 18S rDNA from 13C-DNA was higher under eCO2, there was no difference on the copy number of total 18S rDNA between the CO2 treatments. It is concluded that the increased Po in the rhizosphere under eCO2 was mainly attributed to stimulating microbial biomass/activity which in turn immobilized more P and root-derived materials. The stimulation of microbes resulted from increased C efflux from root systems under eCO2.. © 2014 Elsevier Ltd.
History
Publication Date
2014-01-01Journal
Soil Biology and BiochemistryVolume
75Pagination
8p. (p. 292-299)Publisher
ElsevierISSN
1879-3428Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Categories
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC