La Trobe

In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications

Download (10.33 MB)
journal contribution
posted on 2023-08-28, 01:55 authored by A Refaat, ML Yap, G Pietersz, Aidan WalshAidan Walsh, J Zeller, B del Rosal, Xiaowei WangXiaowei Wang, Karlheinz PeterKarlheinz Peter

Advances in diagnostic imaging have provided unprecedented opportunities to detect diseases at early stages and with high reliability. Diagnostic imaging is also crucial to monitoring the progress or remission of disease and thus is often the central basis of therapeutic decision-making. Currently, several diagnostic imaging modalities (computed tomography, magnetic resonance imaging, and positron emission tomography, among others) are routinely used in clinics and present their own advantages and limitations. In vivo near-infrared (NIR) fluorescence imaging has recently emerged as an attractive imaging modality combining low cost, high sensitivity, and relative safety. As a preclinical tool, it can be used to investigate disease mechanisms and for testing novel diagnostics and therapeutics prior to their clinical use. However, the limited depth of tissue penetration is a major challenge to efficient clinical use. Therefore, the current clinical use of fluorescence imaging is limited to a few applications such as image-guided surgery on tumors and retinal angiography, using FDA-approved dyes. Progress in fluorophore development and NIR imaging technologies holds promise to extend their clinical application to oncology, cardiovascular diseases, plastic surgery, and brain imaging, among others. Nanotechnology is expected to revolutionize diagnostic in vivo fluorescence imaging through targeted delivery of NIR fluorescent probes using antibody conjugation. In this review, we discuss the latest advances in in vivo fluorescence imaging technologies, NIR fluorescent probes, and current and future clinical applications.

Funding

AR acknowledges the financial support in the form of PhD Faculty Growth SUPRA scholarship jointly funded by Swinburne University of Technology and Baker Heart and Diabetes Institute. AR also thanks Faculty of Pharmacy Alexandria University for their continued support. BD acknowledges funding from the Australian Research Council (DE200100985) and RMIT University (VC Fellowships program). XW is supported by a National Heart Foundation Future Leader Fellowship (101932) and a Baker Fellowship. KP is supported by a National Health and Medical Research Council Investigator L3 Fellowship (GNT1174098). AW is supported by Monash University Scholarships and a Baker Bright Sparks Scholarship.

History

Publication Date

2022-10-15

Journal

Journal of Nanobiotechnology

Volume

20

Article Number

450

Pagination

22p.

Publisher

BMC

ISSN

1477-3155

Rights Statement

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC