La Trobe

Improving Fault Tolerance and Reliability of Heterogeneous Multi-Agent IoT Systems Using Intelligence Transfer

Download (7.22 MB)
journal contribution
posted on 2023-08-30, 04:48 authored by Vyasa O'NeillVyasa O'Neill, Ben SohBen Soh
Driven by the ever-growing diversity of software and hardware agents available on the market, Internet-of-Things (IoT) systems, functioning as heterogeneous multi-agent systems (MASs), are increasingly required to provide a level of reliability and fault tolerance. In this paper, we develop an approach to generalized quantifiable modeling of fault-tolerant and reliable MAS. We propose a novel software architectural model, the Intelligence Transfer Model (ITM), by which intelligence can be transferred between agents in a heterogeneous MAS. In the ITM, we propose a novel mechanism, the latent acceptable state, which enables it to achieve improved levels of fault tolerance and reliability in task-based redundancy systems, as used in the ITM, in comparison with existing agent-based redundancy approaches. We demonstrate these improvements through experimental testing of the ITM using an open-source candidate implementation of the model, developed in Python, and through an open-source simulator that tested the behavior of ITM-based MASs at scale. The results of these experiments demonstrated improvements in fault tolerance and reliability across all MAS configurations we tested. Fault tolerance was observed to improve by a factor of between 1.27 and 6.34 in comparison with the control group, depending on the ITM configuration tested. Similarly, reliability was observed to improve by a factor of between 1.00 and 4.73. Our proposed model has broad applicability to various IoT applications and generally in MASs that have fault tolerance or reliability requirements, such as in cloud computing and autonomous vehicles.

Funding

V.O. was supported in this research by an Australian Government Research Training Program Scholarship.

History

Publication Date

2022-08-30

Journal

Electronics

Volume

11

Issue

17

Article Number

2724

Pagination

38p.

Publisher

Multidisciplinary Digital Publishing Institute

ISSN

2079-9292

Rights Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC