La Trobe
- No file added yet -

Impaired cecal motility and secretion alongside expansion of gut-associated lymphoid tissue in the Nlgn3R451C mouse model of autism

Download (5.03 MB)
journal contribution
posted on 2024-02-08, 04:28 authored by CYQ Lee, GK Balasuriya, M Herath, Ashley FranksAshley Franks, EL Hill-Yardin
Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.

Funding

This project was supported by the NHMRC Ideas Grant APP2003848 "Identifying how the enteric nervous system regulates gut permeability in autism" awarded to ELH-Y and AEF. CYQL received an RMIT Research Stipend Scholarship (RRSS).

History

Publication Date

2023-08-04

Journal

Scientific Reports

Volume

13

Article Number

12687

Pagination

18p.

Publisher

Springer Nature

ISSN

2045-2322

Rights Statement

© The Author(s) 2023 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC