La Trobe

Impact of feature proportion on matching performance of multi-biometric systems

Download (818.92 kB)
journal contribution
posted on 2023-05-18, 01:56 authored by Wencheng Yang, Song WangSong Wang, Guanglou Zheng, Craig Valli
Biometrics as a tool for information security has been used in various applications. Feature-level fusion is widely used in the design of multi-biometric systems due to its advantages in increasing recognition accuracy and security. However, most existing multi-biometric systems that use feature-level fusion assign each biometric trait an equal proportion when combining features from multiple sources. For example, multi-biometric systems with two biometric traits commonly adopt a 50–50 feature proportion setting, which means that fused feature data contains half elements from each biometric modality. In this paper, we investigate the impact of feature proportion on the matching performance of multi-biometric systems. By using a fingerprint and face based multi-biometric system that applies feature-level fusion, we employ a random projection based transformation and a proportion weight factor. By adjusting this weight factor, we show that allocating unequal proportions to features from different biometric traits yields different matching performance. Our experimental results indicate that optimal performance, achieved with unequal feature proportions, could be better than the performance obtained with the commonly used 50–50 feature proportion. Therefore, the impact of feature proportion, which has been ignored by most existing work, should be taken into account and more study is required as to how to make feature proportion allocation benefit the performance of multi-biometric systems.

Funding

This paper is supported by Defence Science and Technology Group (DST) of Australia through project CERA 221 (Grant No. G1003250).

History

Publication Date

2019-03-08

Journal

ICT Express

Volume

5

Issue

1

Pagination

4p. (p. 37-40)

Publisher

Elsevier

ISSN

2405-9595

Rights Statement

⃝© 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC