File(s) not publicly available
Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas flourescens
journal contribution
posted on 2021-02-16, 23:02 authored by Meabh CullinaneMeabh Cullinane, C Baysse, JP Morrissey, F O'GaraPhosphatidic acid (PA) is known to be a crucial phospholipid intermediate in cell membrane biosynthesis. In Escherichia coli, this molecule is produced from lysophosphatidic acid (LPA) by LPA acyltransferase (EC 2.3.1.51), encoded by plsC. E coli possesses only one such LPA acyltransferase and a plsC mutant is non-permissive for growth at elevated temperatures. This study describes the identification and characterization of two genes from Pseudomonas fluorescens F113 that encode enzymes with LPA acyltransferase activity. One of the genes, hdtS, was previously described, whereas patB is a novel gene. In addition, a putative lyso-ornithine lipid acyltransferase was also identified. All three proteins possess conserved acyltransferase domains and are homologous to PlsC and to LPA acyltransferases identified in Neisseria meningitidis. Functional analysis determined that both HdtS and PatB are functional LPA acyltransferases, as both complemented an E. coli plsC mutant. Mutants lacking each of the putative acyltransferases were constructed and analysed. Growth defects were observed for hdtS and patB single mutants, and a double hdtSpatB mutant could not be constructed. To determine precise roles in phospholipid synthesis, fatty acid methyl ester analysis was carried out. The hdtS mutant displayed a profile consistent with a defect in LPA acyltransferase activity, whereas no such phenotype was observed in the patB mutant, indicating that hdts encodes the primary LPA acyltransferase in the cell. The presence of at least two genes specifying LPA acyltransferase activity may have implications for the function and survival of P. fluorescens in diverse environments. © 2005 SGM.
History
Publication Date
2005-09-01Journal
MicrobiologyVolume
151Issue
9Pagination
(p. 3071-3080)Publisher
MICROBIOLOGY SOCISSN
1350-0872Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC