La Trobe
1170016_Baker,S_2021.pdf (3.76 MB)

Hybridized neural networks for non-invasive and continuous mortality risk assessment in neonates

Download (3.76 MB)
journal contribution
posted on 2021-07-01, 05:45 authored by S Baker, Wei XiangWei Xiang, I Atkinson
Premature birth is the primary risk factor in neonatal deaths, with the majority of extremely premature babies cared for in neonatal intensive care units (NICUs). Mortality risk prediction in this setting can greatly improve patient outcomes and resource utilization. However, existing schemes often require laborious medical testing and calculation, and are typically only calculated once at admission. In this work, we propose a shallow hybrid neural network for the prediction of mortality risk in 3-day, 7-day, and 14-day risk windows using only birthweight, gestational age, sex, and heart rate (HR) and respiratory rate (RR) information from a 12-h window. As such, this scheme is capable of continuously updating mortality risk assessment, enabling analysis of health trends and responses to treatment. The highest performing scheme was the network that considered mortality risk within 3 days, with this scheme outperforming state-of-the-art works in the literature and achieving an area under the receiver-operator curve (AUROC) of 0.9336 with standard deviation of 0.0337 across 5 folds of cross-validation. As such, we conclude that our proposed scheme could readily be used for continuously-updating mortality risk prediction in NICU environments.


Publication Date



Computers in Biology and Medicine



Article Number








Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles


    No categories selected