File(s) not publicly available
Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm
journal contribution
posted on 2022-03-29, 05:20 authored by PE Spicer, FW Nijhoff, Pieter Van Der KampPieter Van Der KampThe discrete-time Toda equation arises as a universal equation for the relevant Hankel determinants associated with one-variable orthogonal polynomials through the mechanism of adjacency, which amounts to the inclusion of shifted weight functions in the orthogonality condition. In this paper we extend this mechanism to a new class of two-variable orthogonal polynomials where the variables are related via an elliptic curve. This leads to a 'higher order analogue of the discrete-time Toda' (HADT) equation for the associated Hankel determinants, together with its Lax pair, which is derived from the relevant recurrence relations for the orthogonal polynomials. In a similar way as the quotient-difference (QD) algorithm is related to the discrete-time Toda equation, a novel quotient-quotient-difference (QQD) scheme is presented for the HADT equation. We show that for both the HADT equation and the QQD scheme, there exists well-posed s-periodic initial value problems, for almost all . From the Lax-pairs we furthermore derive invariants for corresponding reductions to dynamical mappings for some explicit examples.