La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

Helicoidally arranged polyacrylonitrile fiber-reinforced strong and impact-resistant thin polyvinyl alcohol film enabled by electrospinning-based additive manufacturing

journal contribution
posted on 2020-11-06, 00:32 authored by R Sahay, K Agarwal, A Subramani, N Raghavan, AS Budiman, Avinash BajiAvinash Baji
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. In this study, we demonstrate the use of parallel plate far field electrospinning (pp-FFES) based manufacturing system for the fabrication of polyacrylonitrile (PAN) fiber reinforced polyvinyl alcohol (PVA) strong polymer thin films (PVA SPTF). Parallel plate far field electrospinning (also known as the gap electrospinning) is generally used to produce uniaxially aligned fibers between the two parallel collector plates. In the first step, a disc containing PVA/H2 O solution/bath (matrix material) was placed in between the two parallel plate collectors. Next, a layer of uniaxially aligned sub-micron PAN fibers (filler material) produced by pp-FFES was directly collected/embedded in the PVA/H2 O solution by bringing the fibers in contact with the matrix. Next, the disc containing the matrix solution was rotated at 45◦ angular offset and then the next layer of the uniaxial fibers was collected/stacked on top of the previous layer with now 45◦ rotation between the two layers. This process was continued progressively by stacking the layers of uniaxially aligned arrays of fibers at 45◦ angular offsets, until a periodic pattern was achieved. In total, 13 such layers were laid within the matrix solution to make a helicoidal geometry with three pitches. The results demonstrate that embedding the helicoidal PAN fibers within the PVA enables efficient load transfer during high rate loading such as impact. The fabricated PVA strong polymer thin films with helicoidally arranged PAN fiber reinforcement (PVA SPTF-HA) show specific tensile strength 5 MPa · cm3· g−1 and can sustain specific impact energy (8 ± 0.9) mJ · cm3· g−1, which is superior to that of the pure PVA thin film (PVA TF) and PVA SPTF with randomly oriented PAN fiber reinforcement (PVA SPTF-RO). The novel fabrication methodology enables the further capability to produce even further smaller fibers (sub-micron down to even nanometer scales) and by the virtue of its layer-by-layer processing (in the manner of an additive manufacturing methodology) allowing further modulation of interfacial and inter-fiber adherence with the matrix materials. These parameters allow greater control and tunability of impact performances of the synthetic materials for various applications from army combat wear to sports and biomedical/wearable applications.

Funding

Ministry of Education (MOE) Singapore Academic Research Funds Tier 2 | MOE2017-T2-2-175

History

Publication Date

2020-01-01

Journal

Polymers

Volume

12

Issue

10

Article Number

2376

Pagination

23p. (p. 1-23)

Publisher

MDPI AG

ISSN

2073-4360

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC