posted on 2023-03-29, 04:49authored byRH Smith, CV Hallwirth, Michael WestermanMichael Westerman, NA Hetherington, Y-S Tseng, S Cecchini, T Virag, M-L Ziegler, IB Rogozin, EV Koonin, M Agbandje-McKenna, RM Kotin, IE Alexander
Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications.
Funding
IBR and EVK were supported by the Intramural Research Program of the National Library of Medicine (National Institutes of Health, US Department of Health and Human Services). CVH and NAH are supported by a Discovery Project grant (DP150101253) from the Australian Research Council. MA-M was supported by NIH R01 GM082946. RHS, SC, TV, and RMK were supported by the Intramural Research Program of the National Heart, Lung, and Blood Institute, of the National Institutes of Health.
History
Publication Date
2016-07-05
Journal
Scientific Reports
Volume
6
Article Number
28965
Pagination
17p.
Publisher
Nature Publishing Group
ISSN
2045-2322
Rights Statement
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/