La Trobe

Geochemistry of suspended particulate matter (SPM) in the Murray-Darling River System: A conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements

journal contribution
posted on 2023-04-03, 18:08 authored by G. B Douglas, B. T Hart, R Beckett, C. M Gray, R. L Oliver
La Trobe University Faculty of Science, Technology and Engineering Murray Darling Freshwater Research Centre

MDFRC item.

A conceptual isotopic/geochemical model is presented to explain the variation of major, trace and rare earth element (REE) geochemistry and Sr isotope systematics in suspended particulate matter (SPM) as a function of particle/colloid size. This conceptual model is an extension of a previous investigation of the origin of SPM in the Murray-Darling River system (MDRS) that utilised Sr isotope systematics to examine aspects of SPM (particle/colloid) origin, structure and mineralogy. The geochemical processes that give rise to the often coherent trends in major, trace and REE geochemistry and Sr isotopic signature as a function of particulate (<1 μm) and colloidal (>1 μm) size in the MDRS have been identified using an enhanced SPM size fractionation technique as a basis to not only obtain a broad range of particle/colloid size ranges, but also to provide sufficient material for subsequent geochemical and isotopic analysis. The conceptual isotopic/geochemical model proposed here contains three major components: (i) the differential weathering of micas and alkali (K-) feldspars to form the majority of the particulate (<1 μm) fractions (high 87Sr/86Sr ratio), which have a geochemical and Sr isotopic signature that closely resembles precursor mineralogies, (ii) the differential weathering of Na, Ca-feldspars (plagioclase) which decompose to form clay minerals in the colloidal (>1 μm) fractions (low 87Sr/86Sr ratio), with a range of geochemical signatures related to the relative proportions of inorganic and organic constituents, and (iii) the presence of natural organic matter as coatings on the particulate (<1 μm) and colloidal (>1 μm) matter and possibly as organo-colloids which exert an increasing influence in particular on bulk colloid geochemistry with decreasing colloid size. This conceptual isotopic/geochemical model also accounts for the distinct variation in major, trace and REE geochemistry and Sr isotopic systematics between the particulate (<1 μm) and colloidal (>1 μm) fractions, the variation being primarily a function of the distinctly different precursor mineralogies of the SPM fractions and geochemical fractionation during the weathering and transport. Additionally, this model explains a systematic fractionation of REE apparent within colloidal (>1 μm) fractions. Statisitcal (hierachical cluster) analysis of two particulate and three colloidal fractions from 23 samples from the MDRS is used as a basis to investigate geochemical and mineralogical associations within the particulate and colloidal size fractions and to provide additional supporting evidence for the conceptual isotopic/geochemical model.

History

Publication Date

1999-07-01

Journal

Aquatic geochemistry.

Volume

5

Issue

2

Pagination

167-194

Publisher

Netherlands: Springer.

Data source

arrow migration 2023-03-15 20:45. Ref: f1b71f. IDs:['http://hdl.handle.net/1959.9/495755', 'latrobe:33223']

Usage metrics

    Journal Articles

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC