La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

Genomic prediction of rust resistance in tetraploid wheat under field and controlled environment conditions

journal contribution
posted on 2021-01-18, 23:31 authored by Shiva Azizinia, Harbans Bariana, James Kolmer, Raj Pasam, Sridhar Bhavani, Mumta Chhetri, Arvinder Toor, Hanif Miah, Matthew HaydenMatthew Hayden, Dunia Pino del Carpio, Urmil Bansal, Hans DaetwylerHans Daetwyler
Genomic selection can increase the rate of genetic gain in crops through accumulation of positive alleles and reduce phenotyping costs by shortening the breeding cycle time. We performed genomic prediction for resistance to wheat rusts in tetraploid wheat accessions using three cross-validation with the objective of predicting: (1) rust resistance when individuals are not tested in all environments/locations, (2) the performance of lines across years, and (3) adult plant resistance (APR) of lines with bivariate models. The rationale for the latter is that seedling assays are faster and could increase prediction accuracy for APR. Predictions were derived from adult plant and seedling responses for leaf rust (Lr), stem rust (Sr) and stripe rust (Yr) in a panel of 391 accessions grown across multiple years and locations and genotyped using 16,483 single nucleotide polymorphisms. Different Bayesian models and genomic best linear unbiased prediction yielded similar accuracies for all traits. Site and year prediction accuracies for Lr and Yr ranged between 0.56–0.71 for Lr and 0.51–0.56 for Yr. While prediction accuracy for Sr was variable across different sites, accuracies for Yr were similar across different years and sites. The changes in accuracies can reflect higher genotype × environment (G × E) interactions due to climate or pathogenic variation. The use of seedling assays in genomic prediction was underscored by significant positive genetic correlations between all stage resistance (ASR) and APR (Lr: 0.45, Sr: 0.65, Yr: 0.50). Incorporating seedling phenotypes in the bivariate genomic approach increased prediction accuracy for all three rust diseases. Our work suggests that the underlying plant-host response to pathogens in the field and greenhouse screens is genetically correlated, but likely highly polygenic and therefore difficult to detect at the individual gene level. Overall, genomic prediction accuracies were in the range suitable for selection in early generations of the breeding cycle.


This research was funded by Agriculture Victoria, GRDC Australia and Australia Awards program.


Publication Date








Article Number



17p. (p. 1-17)





Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.