La Trobe
2021-Athukorala et al-Viruses-Genomic Characterisation of a Highly Divergent Siadenovirus from the Critically Endangered Orange-Bellied Parrot .pdf (2.83 MB)

Genomic Characterisation of a Highly Divergent Siadenovirus (Psittacine Siadenovirus F) from the Critically Endangered Orange-Bellied Parrot (Neophema chrysogaster)

Download (2.83 MB)
journal contribution
posted on 14.09.2021, 02:59 by Ajani Athukorala, David N Phalen, Ashutosh Das, Karla HelbigKarla Helbig, Jade K Forwood, Subir SarkerSubir Sarker
Siadenoviruses have been detected in wild and captive birds worldwide. Only nine siadenoviruses have been fully sequenced; however, partial sequences for 30 others, many of these from wild Australian birds, are also described. Some siadenoviruses, e.g., the turkey siadenovirus A, can cause disease; however, most cause subclinical infections. An example of a siadenovirus causing predominately subclinical infections is psittacine siadenovirus 2, proposed name psittacine siadenovirus F (PsSiAdV-F), which is enzootic in the captive breeding population of the critically endangered orange-bellied parrot (OBP, Neophema chrysogaster). Here, we have fully characterised PsSiAdV-F from an OBP. The PsSiAdV-F genome is 25,392 bp in length and contained 25 putative genes. The genome architecture of PsSiAdV-F exhibited characteristics similar to members within the genus Siadenovirus; however, the novel PsSiAdV-F genome was highly divergent, showing highest and lowest sequence similarity to skua siadenovirus A (57.1%) and psittacine siadenovirus D (31.1%), respectively. Subsequent phylogenetic analyses of the novel PsSiAdV-F genome positioned the virus into a phylogenetically distinct sub-clade with all other siadenoviruses and did not show any obvious close evolutionary relationship. Importantly, the resulted tress continually demonstrated that novel PsSiAdV-F evolved prior to all known members except the frog siadenovirus A in the evolution and possibly the ancestor of the avian siadenoviruses. To date, PsSiAdV-F has not been detected in wild parrots, so further studies screening PsSiAdV-F in wild Australian parrots and generating whole genome sequences of siadenoviruses of Australian native passerine species is recommended to fill the siadenovirus evolutionary gaps.


Publication Date









(p. 1714-1714)



Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics