La Trobe

Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata)

journal contribution
posted on 2021-01-06, 01:00 authored by Yu Sugihara, Kwabena Darkwa, Hiroki Yaegashi, Satoshi Natsume, Motoki Shimizu, Akira Abe, Akiko Hirabuchi, Kazue Ito, Kaori Oikawa, Muluneh OliMuluneh Oli, Atsushi Ohta, Ryo Matsumoto, Paterne Agre, David De Koeyer, Babil Pachakkil, Shinsuke Yamanaka, Satoru Muranaka, Hiroko Takagi, Ben White, Robert Asiedu, Hideki Innan, Asrat Asfaw, Patrick Adebola, Ryohei Terauchi
White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata. In contrast to a previous study suggesting that D. rotundata originated from a subgroup of Dioscorea praehensilis, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species Dioscorea abyssinica. We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam and extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.

History

Publication Date

2020-12-15

Journal

Proceedings of the National Academy of Sciences of USA

Volume

117

Issue

50

Pagination

6p. (p. 31987-31992)

Publisher

National Academy of Sciences

ISSN

0027-8424

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC