La Trobe
- No file added yet -

Genome-wide assessment and mapping of inbreeding depression identifies candidate genes associated with semen traits in Holstein bulls

Download (4.11 MB)
Version 2 2023-05-19, 02:38
Version 1 2023-05-19, 02:34
journal contribution
posted on 2023-05-19, 02:38 authored by Seyed Mohammad GHOREISHIFARSeyed Mohammad GHOREISHIFAR, Seyed Milad Vahedi, Siavash Salek Ardestani, Majid KhansefidMajid Khansefid, Jennie PryceJennie Pryce
BACKGROUND: The reduction in phenotypic performance of a population due to mating between close relatives is called inbreeding depression. The genetic background of inbreeding depression for semen traits is poorly understood. Thus, the objectives were to estimate the effect of inbreeding and to identify genomic regions underlying inbreeding depression of semen traits including ejaculate volume (EV), sperm concentration (SC), and sperm motility (SM). The dataset comprised ~ 330 K semen records from ~ 1.5 K Holstein bulls genotyped with 50 K single nucleotide polymorphism (SNP) BeadChip. Genomic inbreeding coefficients were estimated using runs of homozygosity (i.e., FROH > 1 Mb) and excess of SNP homozygosity (FSNP). The effect of inbreeding was estimated by regressing phenotypes of semen traits on inbreeding coefficients. Associated variants with inbreeding depression were also detected by regressing phenotypes on ROH state of the variants. RESULTS: Significant inbreeding depression was observed for SC and SM (p < 0.01). A 1% increase in FROH reduced SM and SC by 0.28% and 0.42% of the population mean, respectively. By splitting FROH into different lengths, we found significant reduction in SC and SM due to longer ROH, which is indicative of more recent inbreeding. A genome-wide association study revealed two signals positioned on BTA 8 associated with inbreeding depression of SC (p < 0.00001; FDR < 0.02). Three candidate genes of GALNTL6, HMGB2, and ADAM29, located in these regions, have established and conserved connections with reproduction and/or male fertility. Moreover, six genomic regions on BTA 3, 9, 21 and 28 were associated with SM (p < 0.0001; FDR < 0.08). These genomic regions contained genes including PRMT6, SCAPER, EDC3, and LIN28B with established connections to spermatogenesis or fertility. CONCLUSIONS: Inbreeding depression adversely affects SC and SM, with evidence that longer ROH, or more recent inbreeding, being especially detrimental. There are genomic regions associated with semen traits that seems to be especially sensitive to homozygosity, and evidence to support some from other studies. Breeding companies may wish to consider avoiding homozygosity in these regions for potential artificial insemination sires.

History

Publication Date

2023-05-03

Journal

BMC Genomics

Volume

24

Issue

1

Article Number

230

Pagination

11p.

Publisher

BioMed Central Ltd

ISSN

1471-2164

Rights Statement

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the licence, and indicate if changes were made. The images or other third party material in this article are included in the licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view the licence: http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.