
Genetic Programming for Multiple Feature
Construction on High-Dimensional Classification

Binh Trana,∗, Mengjie Zhanga, Bing Xuea

aSchool of Engineering and Computer Science, Victoria University of Wellington, PO Box
600, Wellington 6140, New Zealand

Abstract

Data representation is one of the most important factors deciding the perfor-

mance of machine learning algorithms including classification. Feature construc-

tion can combine original features to form high-level ones that can help classifi-

cation algorithms achieve better performance. Genetic programming (GP) has

shown promise in feature construction due to its flexible representation. Most

GP methods construct a single feature, which may not scale well to high di-

mensional data. Multiple feature construction is required to provide a better

representation. This paper aims at investigating different approaches to con-

structing multiple high-level features, and analyse their underlying behaviours to

reveal the insight of multiple feature construction using GP in high-dimensional

data in terms of both the effectiveness and efficiency. The results show that the

class-dependent method, which focuses on discriminating instances of a certain

class from the others, achieves better performance than the class-independent

counterpart. A combination of appropriate filter measures helps GP construct

highly discriminating features in a shorter time than a combination of both filter

and wrapper approaches. Furthermore, using multiple-tree GP representation

is more effective than using the single-tree GP in multiple-feature construction

thanks to the ability of determining the interaction of the newly constructed

features during the construction process.

∗Corresponding author
Email address: {Binh.Tran, Mengjie.Zhang, Bing.Xue}@ecs.vuw.ac.nz (Binh Tran)

Preprint submitted to Pattern Recognition July 12, 2018

Keywords: Feature construction, genetic programming, classification, class

dependent, high-dimensional data,

1. Introduction

In machine learning, data representation is one of the most important fac-

tors deciding the performance of any learning algorithm including classification

[1]. With the advances in data collection technologies, more and more high-

dimensional data are collected with thousands or tens of thousands of features.5

Inducing patterns from these datasets is challenging for many common learning

algorithms due to the curse of dimensionality. Furthermore, there may exist a

large number of irrelevant and redundant features that are not actually useful

in learning the target concept. The presence of these features may obscure the

effect of the relevant features on showing the hidden pattern of the data, and10

thereby reduce the representativeness of the whole feature set [2].Therefore, di-

mensionality reduction is essential in the datasets. Feature selection has shown

to be effective in improving classification performance of learning algorithms

on high-dimensional data by removing irrelevant and redundant features. How-

ever, its performance may still be limited if the original features do not provide15

enough discriminative information for learning algorithms to learn a good clas-

sifier. There may exist certain combinations of features that may provide better

discriminating ability [3]. In this case, feature construction can be used to

construct new high-level features that better represent the problem.

Genetic programming (GP) is an evolutionary computation technique that20

has shown promise in feature construction. As a population-based algorithm,

GP evolves a population of individuals, each of which represents a single con-

structed feature (i.e. single-tree representation) or a set of constructed features

(i.e. multi-tree representation). Most feature construction methods are pro-

posed to construct a single feature, which may not be enough to represent the25

complex feature space of the original thousands of features. Therefore, it is nec-

essary to construct more features for these high-dimensional datasets to obtain

2

better representation.

Multiple feature construction methods have been proposed using both single-

tree [4, 5, 6] and multi-tree [7, 8, 9] representation. When using single-tree30

representation, GP can construct multiple features by using all possible subtrees

[4] or some subtrees under predefined special nodes [5]. Another approach to

multiple feature construction using single-tree GP is to run GP multiple times,

each time constructs a new feature [6]. Multiple-tree GP was also proposed and

shown effective in constructing multiple features on datasets with about tens of35

features [7, 8, 9] as well as thousands of features [10].

In addition to the choice between single or multi-tree representation, con-

structing class-dependent or class-independent features is another option in de-

signing a feature construction method. Most of the proposed GP-based feature

construction methods are class-independent, where each high-level feature is40

constructed without focusing on any specific class of the problem. On the other

hand, each class-dependent constructed feature aims at distinguishing instances

of one class from other classes [6]. However, the method is limited to con-

struct one feature for each class, which may not scale well with high-dimensional

data. Recently, a multiple class-dependent feature construction method for high-45

dimensional data [11] was proposed and shown to achieve better performance

than the class-independent constructed features.

Furthermore, during the feature construction process, different approaches

can be chosen to evaluate the constructed features. They are filter, wrapper,

embedded or combination of these approaches [12]. While filter methods use50

some measure such as information gain or impurity to evaluate the constructed

features [6], wrapper methods have a classification algorithm to evaluate them

[5]. While wrapper methods are usually computationally more expensive than

filter methods, they usually obtain better classification accuracy. On the other

hand, filter are usually more general than wrappers. Combination of the two55

measures was also proposed to better evaluate the constructed feature set [11].

Since a GP tree (or the constructed feature) can be used as a binary classifier,

its classification performance can be used to evaluate itself. This scenario is

3

referred to as embedded feature construction method [13].

Although feature construction using GP has been studied for decades, most60

of the methods are applied on datasets with tens of features. Compare to

feature selection, the search space of feature construction is larger since it re-

quires to choose not only a good feature subsets but also an appropriate set

of operators to combine them for a better discriminating features. Recently,

two multiple feature construction methods were proposed for high-dimensional65

data, one was class-independent [10] and one was class-independent [11]. The

latter was found to be better than the former. However, the two methods are

different in a number of aspects (to be described in Section 3.2), any of which

can lead to the difference in their performance. Therefore, it is necessary to

further investigate them in the same context in order to confirm the effective-70

ness of class-dependent constructed features. Further comparison with other

feature construction methods and analysis are needed to have a better insight

into the performance of the above mentioned approaches to multiple feature

construction on high-dimensional data.

1.1. Goals75

This study aims at investigating GP-based multiple feature construction

approaches including using single-tree versus multi-tree representation, class-

dependent versus class-independent feature construction, and different approaches

to evaluating the constructed features during the evolutionary process. Three

multiple feature construction methods will be investigated including two meth-80

ods using multi-tree representation, namely the class-independent (MCIFC) [10]

and the class-dependent (CDFC) [11], and one method using single-tree repre-

sentation to construct class-dependent features (1TGPFC) [6]. Performance of

the constructed features by the three methods will be compared based on the

classification performance of common learning algorithms including k-Nearest85

Neighbour (KNN), Naive Bayes (NB) and Decision Tree (DT). Specifically, the

following research questions will be investigated:

4

• Whether the constructed features help learning algorithms achieve better

classification accuracy than the original full feature set;

• Whether class-dependent constructed features achieve better classification90

performance than class-independent ones;

• Whether using multi-tree representation, GP constructs new features with

higher discriminating ability than using single-tree representation; and

• Whether using filter method to evaluate constructed features is more ef-

fective and efficient than combining wrapper and filter measures.95

2. Related Work

2.1. Single-Tree GP-Based Feature Construction

One of the first GP based feature construction methods using single-tree

representation was proposed by Raymer et al. [14]. It aimed to improve their

previous method that used a GA to evolve weights that can transform each orig-100

inal features into a new one. The GA was replaced by a GP to enable non-linear

transformation for each feature. Each GP individual was a single-tree with n

subtrees, where n was the number of original features. KNN was used to evalu-

ate the constructed feature set. Results on a water displacement problem with

four features showed that the proposed GP based feature construction method105

obtained better KNN accuracy than a GA-based one. However, dimensionality

reduction is not the aim of this method.

Cooperative coevolution was also proposed to combine many single-tree GP

populations to construct multiple features. In [15], one GP population was

used to evolve a new feature for each original feature. Another GA population110

was used for feature selection. KNN was used to evaluate the new feature set.

Similarly, in [16], n concurrent populations of single-tree individuals was used

to evolve n new features where n is the desired number of constructed features.

The entire new feature subset was evaluated using DT. Experiments on a dataset

with nine features showed that the proposed method constructed better features115

5

than the standard multi-tree GP method. However, since the number of fitness

function calls was n time greater than that of standard GP, the computational

time of cooperative coevolution approach was significantly high.

Constructing multiple features from all possible subtrees in a single-tree,

Ahmed et al. [4] proposed two GP based wrapper feature construction methods,120

namely GPWFC1 and GPWFC2 for high dimensional data. While GPWFC1

used classification accuracy of random forest (RF) classifier as the fitness value,

GPWFC2 used entropy gain of RF and the p-value of an ANOVA test on the

selected features. Results showed that GPWFC2 achieved better generalisation

ability and smaller numbers of features than GPWFC1. However, the computa-125

tional cost was quite high when adopting RF as the learning algorithm for fitness

evaluation. This is a common drawback of GP based wrapper approaches, which

can be avoided with filter methods.

Using information gain ratio to evaluate the constructed feature, Otero et

al. [17] proposed a GP based filter feature construction method to construct a130

new continuous or boolean feature using arithmetic and relation operators. The

constructed feature was then augmented to the original feature set. Results

on four datasets with 4 to 21 features showed that the constructed feature can

improve the performance of C4.5. However, since both C4.5 and the proposed

method are based on information gain, it is unknown whether the constructed135

features will also be beneficial for other learning algorithms. This question has

been investigated in [18, 19] where the performance of C5, which is a DT al-

gorithm, was compared with two other DT algorithms, CART and CHAID,

and multilayer perceptron. Results showed that these classifiers generally ben-

efited from the inclusion of the constructed feature. However, more datasets140

with larger number of features should be used to illustrate the performance and

generalisation of this method.

Running single-tree GP program multiple times, Neshatian et al. [20] pro-

posed a new approach to multiple feature construction. The number of con-

structed features was equal to the number of classes. Each GP run focused on145

one class. Constructed features were evaluated based on the impurity (using

6

Shannon entropy) of the intervals which were formed by applying class dis-

persion to the transformed datasets. The results indicated that constructed

features helped DT achieved smaller error rates with much smaller sizes than

using original features in most cases. However, when combining constructed150

features with original features, the performance of learnt DTs was worse than

using constructed features only in most cases. The method was improved in

[21, 6] by adding class-wise orthogonal transformed features to GP terminal

sets. Results indicated that constructed features increased the classification ac-

curacy of the learned DTs. However, by adding more features, this strategy155

significantly increased the GP search space. Therefore, it may not be effective

and efficient for high-dimensional data.

Combining GA and GP in a single representation, Nguyen et al. [22] pro-

posed to construct and select features simultaneously in a single evolutionary

process. Each individual contained an n− bit string for feature selection and a160

single tree to construct one feature. The whole set of selected and constructed

features were evaluated by KNN. Results on 10 UCI datasets showed that the

proposed method either obtained similar or significantly better accuracies than

the compared methods in almost all cases. However, the performance of this

method can be degraded when applying to high-dimensional data because the165

effect of the single constructed feature may not be recognised when using KNN

to evaluate the whole set of selected and constructed features.

By considering the single-tree as a classifier which can evaluate the perfor-

mance of the constructed feature, an embedded feature construction method

(GPFC) [13] was proposed for high-dimensional gene expression data. Differ-170

ent ways of using the constructed and selected features in the single-tree were

compared. The results showed that the combination of constructed and selected

features had the best performance among the five combinations. However, GP

performance might be limited when confronted with a large number of features

which may be irrelevant or redundant. An improvement was proposed in a175

cluster-based feature construction method (CGPFC) [23] where feature cluster-

ing was used to narrow the GP search space in high-dimensional data. The

7

results on 8 gene expression datasets with thousands to tens of thousands of

features showed that CGPFC selected a much smaller number of features to

construct a better feature than GPFC. However using GP as a classifier to eval-180

uate the constructed feature, both GPDC and CGPFC can only be applied to

binary-class problems.

2.2. Multi-Tree GP-Based Feature Construction

Multi-tree representation has been used in multiple feature construction

methods. Krawiec [8] used a multi-tree GP to construct a predefined num-185

ber of features (n). Each GP individual comprised of n new features and n

hidden features. Hidden features were also constructed features but kept out of

the evolutionary process to avoid losing good constructed features during the

evolutionary process. DT was used to evaluate each individual. Results on six

datasets with less than ten features showed that constructed features improved190

the classification performance of DT on most datasets. Using hidden features

also obtained close to or sometimes better results than standard approach where

all features are involved in the evolutionary process.

Smith and Bull [24, 25] combined GP for multiple feature construction and

GA for selection simultaneously which used DT to evaluate features. For an n-195

dimension problem, a GP individual had n trees, each associated with a boolean

variable showing if it is selected or not, and a flag to choose among DT, KNN and

NB for evaluation. The method has shown to significantly improve classification

performance on 2 out of 10 datasets with 5 to 60 features. In [26], GA was used

to select a subset of features which was then used by GP to construct new200

features. The result on an image dataset with 8 features were encouraging

when GA chose 4 features, 2 of which were then used by GP to construct

3 features. The reverse order was also investigated in the GAP method [9]

where GP was used to construct n new features, where n is the number of

the original features. GA was applied to the augmented feature set to reduce205

the number of features. Experiments on 10 UCI datasets showed that GAP

improved the performance of C4.5 on 8 datasets. Although C4.5 was used in

8

its fitness function, GAP results were robust to other classifiers including KNN

and NB. The results from these work have demonstrated that combination of

EC techniques is a promising approach to feature manipulation. However, on210

top of the high computational cost, these representations are not suitable for

problems with thousands of features.

3. Multiple Feature Construction Methods

To make this paper easy to follow, this section will briefly describe the three

methods that will be investigated as they were proposed in the original papers.215

3.1. MCIFC: A Multiple Class-Independent Feature Construction Method

MCIFC [10] uses a multi-tree GP to construct a small number of features

that is set proportional to the number of classes of the problem. This design is

based on a hypothesis that a problem with a higher number of classes is more

complex and may require more features to represent the data. The number of220

new features is calculated using Eq. 1.

nbr cf = r × c (1)

where r is a user-defined ratio and c is the number of classes. For example, if

r = 2, MCIFC will construct 4 features for a binary-class problem. Fig. 1 shows

the representation of MCIFC.

Max

+

F7 - F2F4

+

-

F9 F4 F2F5

CF2 CF1
-

+ Max

F6 F4 F1+

CF3

+ -

F6 If F3F8

CF4

F9 F4 F8 F4 F4 F8F1

Figure 1: MCIFC representation.

Using this example individual, 4 features are generated as follows.225

• CF1 = Max(F7 + (F9 − F4), F4 × F2)

• CF2 = (F9 − F4) + (F5 × F2)

9

• CF3 = (F6 + F4) − Max(F8 + F4, F1)

• CF4 = (F6 + If(F4, F1, F8)) × (F8 − F3)

MCIFC uses a weight (α) to combine the DT classification accuracy and a230

distance measure in the fitness function as shown in Equation (2).

Fitness = α ·Bal Accuracy + (1− α) ·Distance (2)

Bal Accuracy is the average of the balanced accuracies obtained from the K-fold

(K=3) cross-validation (CV) on the transformed training set. In addition, the K-

fold CV is repeated L times (L=3) with different data splitting. Therefore, K×

L, i.e. 9, models were built to evaluate each individual. This evaluation scheme235

is used to avoid overfitting even though it is a little bit more expensive but

affordable because the number of constructed features are small. The balanced

accuracy [27] is calculated based on Equation (3).

Bal Accuracy =
1

c

c∑
i=1

TPi

|Si|
(3)

where c is the number of classes, TPi and Si are the number of correctly iden-

tified instances and the number of total instances of class i, respectively.240

The Distance measure [28] calculated based on Equation (4) is used to

maximise the distance of instances between class (Db) and minimise the distance

of instances within the same class (Dw). Let S be the training set, Db and Dw

are approximated based on Equations (5) and (6).

Distance =
1

1 + e−5(Db−Dw)
(4)

245

Db =
1

|S|

|S|∑
i=1

min
{j|j 6=i,class(Vi)6=class(Vj)}

Dis(Vi, Vj) (5)

Dw =
1

|S|

|S|∑
i=1

max
{j|j 6=i,class(Vi)=class(Vj)}

Dis(Vi, Vj) (6)

Czekanowski(Vi, Vj) = 1−

2

n∑
d=1

min(Vid, Vjd)

n∑
d=1

(Vid + Vjd)

(7)

10

where Dis(Vi, Vj) is the distance between two vectors Vi and Vj , which was

approximated by the Czekanowski measure [29] as shown in Equation (7).

3.2. CDFC: A Multiple Class-Dependent Feature Construction Method250

Similar to MCIFC, the number of constructed features by CDFC is also

calculated based on Eq. (1). However, different from MCIFC, each feature

constructed by CDFC is class-dependent. It aims at discriminating instances

of one class to other classes. In other words, each feature is associated with

one class. Fig. 2 shows an example of an individual of CDFC with r = 1 for255

a three-class problem. In this case, while CF1 is evolved towards a high-level

feature that can distinguish instances of Class1 to other classes, CF2 and CF3

focus on Class2 and Class3, respectively.

Max

+

F7 - F2F4

CF1 Class1 -

+ Max

F6 F8 F2+

CF2 Class2

+ -

F5 If F3F1

CF3 Class3

F9 F4 F8 F4 F3 F9F1

Figure 2: Representation of a class-dependent GP individual with construction ratio 1.

In CDFC, a new feature cf is constructed from a subset of original features

that are relevant to the class that cf associates with. t-Test was used to measure260

how relevant a feature f is to class c. Values of f are first divided into two

groups, one comprises values belonging to class c and one from other classes.

Then, Equation (8) is used to measure its relevance to class c, Relf,c, which

considers not only the difference between the means of two groups (t-value) but

also the confidence of this difference (p-value). It is set to 0 if the two groups265

are not significantly different (i.e. p-value ≥ 0.05), and to the absolute of t-

value divided by p-value, otherwise. Therefore, the larger the value of Relf,c,

the more relevant the feature f to class c. For each class c, features are ranked

by its Relf,c values. Then half of the top-ranked features will be used to form

11

the terminal set of class c. This strategy not only eliminates irrelevant features270

but also narrows the search space so that the searching process will be more

efficient.

Relf,c =

 0, if p-value ≥ 0.05

|t-value(fclass=c,fclass 6=c)|
p-value

, otherwise
(8)

To speed up the evaluation process, CDFC replaces the DT classification ac-

curacy (Bal Accuracy) in Eq. (2) by information gain (AvgIG), which is the

base measure of DT, as shown in Equation (9). The size of the GP individual275

(indSize) is also used here as a pressure for small-tree preference. Its weight is

set to a very small value (10−7) in order to limit its effect on cases when two

individuals have the same information gain and distance.

Fitness = α ·AvgIG+ (1− α) ·Distance− 10−7 · indSize (9)

AvgIG is calculated based on Equation (10) where fmax is the best feature

with the highest IG among m constructed features. The fmax’s IG is added280

to bias toward those candidates that have the better fmax. IG of feature f is

calculated based on unconditional and conditional entropy H as in Equation

(11), i.e. mutual information.

AvgIG =

m∑
i=1

IG(fi, class) + IG(fmax, class)

m+ 1
(10)

IG(f, class) = H(class)−H(class|f) (11)

Fig. 3 shows the overall system of CDFC. Based on the training set, CDFC285

constructs c terminal sets, each of which is corresponding to one class. Note

that they can be overlap since one feature can be relevant to more than one

class. The tree associated with class i will use the ith terminal set.

It can be seen that MCIFC and CDFC are different in a number of aspects.

Firstly, while MCIFC’s terminal set includes all the original features, the ter-290

minal sets of CDFC are smaller than MCIFC and generally comprised of good

features. Therefore, the search space of MCIFC is larger than CDFC. Secondly,

12

Training

Set

Test Set

Terminal Set

Class 0

Terminal Set

Class 1

Terminal Set

Class c

Constructed

Features

Transformed

Training & Test Set

Test

Accuracy

tTest

Measure

GP For Class

Dependent

Feature

Construction

Data Transformation

Learning Algorithm

...

CDFC

End

Begin

Figure 3: CDFC overall system.

they use different fitness functions, which will lead to different performance.

Therefore, the difference in their performance may not necessarily contributed

only by the class-dependency of the constructed features. Therefore, this study295

conducts further experiments where their terminal sets are equally set.

4. Experiment Design

Table 1: Datasets

Dataset #F #Inst. #Class Class Distribution Ref.

Colon 2,000 62 2 35%, 65% [30]

DLBCL 5,469 77 2 25%, 75% [31]

Leukemia 7,129 72 2 35%, 65% [30]

CNS 7,129 60 2 35%, 65% [30]

Prostate 10,509 102 2 49%, 51% [31]

Ovarian 15,154 253 2 36%, 64% [30]

Leukemia1 5,327 72 3 12%, 35%, 53% [31]

SRBCT 2,308 83 4 13%, 22%, 30%, 35% [31]

4.1. Datasets

Eight gene expression datasets with thousands of features are used to exam-

ine the performance of the proposed method on high-dimensional data. Details300

about these datasets are shown in Table 1. Among the eight datasets, six are

13

binary-class problems, one has three classes (Leukemia1), and the last one has

four classes (SRBCT).

Data is pre-processed to reduce noise generated during the data collection in

laboratories as suggested in [32]. First, features are standardised (based on the305

training set) to have zero mean and unit variance, then discretised into -1, 0 and

1 representing three states which are the under-expression, the baseline and the

over-expression of gene. If the feature values are in the range of [−0.5, 0.5], they

will be set to 0. Otherwise, they will be set to −1 or 1 depending on whether

they are smaller than -0.5 or larger than 0.5, respectively.310

4.2. Experiment Configuration

Due to the small number of instances in each dataset, 10-fold CV is used to

generate training and test set, where one is used for testing, and the other 9

for training. Only the training data is used to during the feature construction

process. As GP is a stochastic algorithm, 50 independent runs of each method315

with 50 different random seeds are executed on each training set. Average of

500 results (50× 10) are used in comparisons.

Experiments were runs on PC with Intel Core i7-4770 CPU @ 3.4GHz, run-

ning Ubuntu 4.6 and Java 1.7 with a total memory of 8GB. The results of 50

runs from each method were compared using the statistical significance test [33],320

with a significance level of 0.05.

4.3. Parameter Settings

Table 2 describes the parameter settings of all GP based methods used in

the experiments. The function set comprises of 3 arithmetic operators (+, −,

×), a max function which returns the maximum values from the two inputs325

and an if function which returns the second argument if the first argument is

positive and returns the third argument otherwise. No constant values are used

in the terminal set for simplicity. The population size is set proportional to

the dimensionality of the problem using a coefficient β which is set to 3 for the

Colon dataset and to 2 for all the others due to memory limit. The construction330

14

Table 2: Parameter settings

Function set +, −, ×, max, if

Maximum Tree Depth 8

Population Size #features x β

Initial Population Ramped Half-and Half

Generations 50

Crossover Rate 0.8

Mutation Rate 0.2

Elitism Size 1

Selection Method Tournament Method

Tournament Size 7

Construction ratio r 2

Fitness weighting α 0.8

ratio r used to determine the number of constructed features is experimentally

chosen as 2. The fitness weight α in both MCIFC and CDFC is set to 0.8 in

order to bias fitness values towards the accuracy (in MCIFC) and information

gain measure (in CDFC).

5. Results and Discussions335

5.1. Filter Class-Dependent Versus Hybrid Class-Independent Methods

In this experiment, CDFC is compared with MCIFC whose terminal set is

also filtered as in CDFC. MCIFC’s terminal set is constructed by combining

all the class-dependent terminal sets of CDFC. However, MCIFC still uses the

hybrid evaluation method which combine DT accuracy and distance as in Eq.340

(2), which is called as hMCIFC to distinguish it from MCIFC proposed in [10].

Table 3 shows the average test accuracy of KNN, NB and DT using the

constructed features obtained from 50 independent runs of CDFC compared

with “Full” (i.e. using the original feature set) and hMCIFC. The number

of features and instances of each dataset is displayed in parenthesis under the345

dataset name for reading convenience. For each learning algorithm, the best (B),

the mean and standard deviation (M±Std) results are displayed. The best result

among the three compared methods on each dataset is highlighted. In addition,

15

the Wilcoxon significance test is applied to the results with a 5% significance

level. Its results for KNN, NB and DT are displayed in column S1, S2, and S3,350

respectively. “+” or “-” indicates that the corresponding method is significantly

better or worse than CDFC. “=” means they have similar performance. In

other worse, the more “–”, the better the class-dependent feature construction

method.

Table 3: Results of the constructed features

Dataset Method B-KNN M±Std-KNN S1 B-NB M±Std-NB S2 B-DT M±Std-DT S3

Colon

(2000)

(62)

Full 74.29 – 72.62 – 74.29 –

hMCIFC 85.71 75.74 ± 4.45 – 87.14 75.60 ± 4.36 – 84.05 74.85 ± 4.70 –

CDFC 88.81 81.87 ± 3.08 90.47 83.52 ± 3.11 87.38 78.03 ± 4.00

DLBCL

(5469)

(77)

Full 84.46 – 81.96 – 80.89 –

hMCIFC 97.32 91.63 ± 2.41 – 96.25 91.19 ± 2.38 – 96.25 89.71 ± 3.13 =

CDFC 98.75 96.03 ± 1.96 98.75 95.25 ± 2.19 95.00 90.76 ± 3.01

Leukemia

(7129)

(72)

Full 88.57 – 91.96 – 91.61 =

hMCIFC 97.50 92.60 ± 2.68 – 97.32 91.87 ± 2.70 – 95.89 90.23 ± 2.47 =

CDFC 98.57 94.83 ± 1.71 97.32 94.07 ± 1.60 94.82 90.72 ± 2.47

CNS

(7129)

(60)

Full 56.67 – 58.33 – 50.00 –

hMCIFC 78.33 61.97 ± 5.02 – 78.33 63.07 ± 4.99 – 75.00 60.90 ± 4.84 =

CDFC 73.33 65.10 ± 4.20 73.33 66.17 ± 3.75 68.34 61.03 ± 4.87

Prostate

(10509)

(102)

Full 81.55 – 60.55 – 86.18 –

hMCIFC 91.27 87.26 ± 2.70 – 93.18 87.44 ± 2.73 – 90.36 85.26 ± 2.24 –

CDFC 95.18 92.81 ± 1.59 96.09 92.82 ± 1.50 94.09 88.04 ± 2.52

Ovarian

(15154)

(253)

Full 91.28 – 90.05 – 98.41 –

hMCIFC 100.00 99.41 ± 0.49 – 100.00 99.48 ± 0.45 = 100.00 98.93 ± 0.65 =

CDFC 100.00 99.73 ± 0.31 100.00 99.55 ± 0.34 100.00 98.78 ± 0.69

Leukemia1

(5327)

(72)

Full 88.57 – 88.75 – 94.46 +

hMCIFC 94.46 90.97 ± 2.51 – 94.64 91.03 ± 2.21 – 94.46 90.53 ± 2.55 =

CDFC 97.32 93.47 ± 1.82 97.32 93.07 ± 2.22 95.89 89.72 ± 2.70

SRBCT

(2308)

(83)

Full 80.83 – 97.50 + 72.36 –

hMCIFC 95.28 89.00 ± 3.14 – 93.89 88.87 ± 2.71 – 91.25 83.85 ± 3.78 –

CDFC 100.00 95.88 ± 1.94 100.00 95.08 ± 2.39 94.17 88.01 ± 3.48

5.1.1. CDFC versus Full355

All the “–”s appeared in column S1 of Table 3 showed that the constructed

features helped KNN achieve significantly higher accuracy than using full fea-

ture sets on all the eight datasets. The highest improvement was on the SRBCT

dataset with 15% on average and 20% in the best case, reaching 100% accuracy.

16

The modest improvement was still 5% on average and 9% in the best case360

on Leukemia1. The results showed that the discriminating ability of the con-

structed features was much higher than the original all features although the

number of constructed features was negligible to the original dimensionality.

For NB, the features constructed by CDFC also obtained better performance

than Full on almost all datasets. For example, using the 4 features constructed365

on Prostate, NB achieved 32% higher accuracy than using the whole 10,509

features. Similarly, the improvement on Colon and DLBCL was 11% and 14%

on average with 18% and 17% in the best case, respectively. Only on SRBCT,

CDFC had about 2.4% lower accuracy than Full. However, the best accuracy

achieved by CDFC was 100% which was 2.5% higher than the Full accuracy.370

Compared with using Full, DT using features constructed by CDFC also

had significantly better performance on six datasets, similar on one and worse

on the remaining one. An improvement of at least 10% on average accuracy

was achieved on three datasets, namely SRBCT, CNS and DLBCL, with the

best accuracy improved from 15% to 22%. Only on Leukemia1, CDFC obtained375

about 5% lower average accuracy than Full. However, the best result was still

better than Full.

In general, over the 24 comparisons with Full using the three learning algo-

rithms on eight datasets, CDFC won 21, drew 1 and lost 2 in terms of average

accuracy. However, in term of the best accuracy, CDFC outperformed Full in380

all 24 cases except for the tie result of DT on Leukemia1. The results showed

that CDFC could construct a very small number of features with a high dis-

criminating ability which can generalise well to the three learning algorithms in

most cases.

5.1.2. CDFC versus hMCIFC385

As shown in Table 3, although both methods constructed the same num-

ber of features for each dataset (since the construction ratio was set as 2 for

both methods), KNN using features constructed by CDFC achieved significantly

better performance than using those of hMCIFC on all datasets. The highest

17

improvement of 10% on average was found on Colon, where hMCIFC failed to390

maintain the Full accuracy. The results showed that using terminal sets com-

prising of features that are relevant to a specific class, CDFC achieved much

better results than hMCIFC, allowing it to obtain the best KNN accuracy on

all datasets.

Similarly, using features constructed by CDFC, NB achieved significantly395

better accuracy on 7 datasets than using those constructed by hMCIFC. Among

these datasets, CDFC further improved the performance of hMCIFC from 6%

to 12% on 5 datasets. Only on Ovarian, CDFC obtained a similar accuracy as

hMCIFC.

For DT, features constructed by CDFC obtained significantly better perfor-400

mance than those of hMCIFC on five datasets, namely Colon, DLBCL, CNS,

Prostate and SRBCT with a further improvement of 3% to 7%. For the re-

maining three datasets, CDFC had similar performance as hMCIFC on two and

worse on one.

In general, compared with hMCIFC using the three learning algorithms,405

CDFC won 20, drew 3 and lost 1 out of the 24 comparisons.

Comparisons between the three learning algorithms revealed an interest-

ing phenomenon. Recall that the features constructed by both hMCIFC and

CDFC were optimised towards DT performance by using either DT accuracy

(hMCIFC) or information gain (CDFC) in their fitness functions. However, the410

results showed that the improvement of DT performance was not as much as

KNN and NB, making its accuracy usually lower than the other two learning

algorithms. This may relate to the characteristics of DT where classification

decision highly depends on the split values inside the internal nodes of the DT

trees. These values are learned based on the training data, which may not be415

generalised well to the unseen test data of these datasets due to their skew

distributions with many outliers as discussed in [13].

Another interesting observation from the results of CDFC and hMCIFC was

that although DT used IG as its base measure, it had less power than the aver-

age IG measure in evaluating GP individual with multiple constructed features.420

18

This finding is contradictory with common practice where wrapper approaches

are preferred to filter ones because they usually produce better classification

performance. However, the results showed that CDFC obtained significantly

higher accuracy than hMCIFC in almost all cases. A closer investigation on the

evolutionary process of hMCIFC showed that in a set of multiple constructed425

features that gave very good DT accuracy, there might exist very bad or even

constant-value features. The reason is that DT does not use all features in

building the DT tree. Therefore, the returned classification accuracy does not

reflect the goodness of all constructed features. On the other hand, the average

IG shows the average relevance level of all the constructed features of the indi-430

vidual. Therefore, using average IG as a fitness measure, GP can better evaluate

individuals and choose those that comprise more good features to create better

offspring in its evolutionary process.

In summary, features constructed by CDFC had significantly better perfor-

mance than those constructed by hMCIFC on 20 cases, similar on 3 and worse435

on 1. Note that results of CDFC had smaller standard deviation than hMCIFC

in almost all cases. This indicated that by constraining the terminal sets to

class relevant features, the performance of CDFC was better and more stable

than hMCIFC.

5.1.3. Computation Time440

Fig. 4 shows the average running time to complete a single run for hMCIFC

and CDFC. Results in the figure showed that the CDFC running time was less

than half of hMCIFC on five out of the eight datasets, and less than 65% on

the remaining three.

Note that both methods used the same population size and the maximum445

number of generations. In other words, they had the same number of evalua-

tions. Therefore, the running time difference was mainly contributed by the size

of GP individuals and the computation time of the fitness evaluations. Fig. 5

shows the average size of 500 GP individuals returned by both methods. The

results showed that CDFC had larger individuals than hMCIFC on 6 out of450

19

CL DL LK CNS

R
u

n
n

in
g

 T
im

e
 (

m
in

.)

0
1

2
3

4

LK1 SR PT OV

0
5

1
5

2
5

3
5

hMCIFC CDFC

Figure 4: Computation time of CDFC versus hMCIFC.

CL DL LK CNSG
P

 I
n

d
iv

id
u

a
l
S

iz
e

 (
N

o
d

e
s
)

0
5
0

1
0
0

1
5
0

2
0
0

LK1 SR PT OV

0
5
0

1
0
0

1
5
0

hMCIFC CDFC

Figure 5: The average size of GP individuals of CDFC versus hMCIFC.

8 datasets. Therefore, CDFC would required longer time to process its indi-

viduals. However, as shown in Fig. 4, CDFC running time was much shorter

than hMCIFC on all datasets. This means that the time increased in CDFC

for processing GP trees was much smaller than the time increased in hMCIC

for fitness evaluation. The fitness function of CDFC comprises of two filter455

measures, distance and IG, while hMCIFC combines distance with a wrapper

measure which is an average accuracy of 9 DT models built on the training set.

Although IG is the base measure of DT, computation time of the average IG

20

=

+
=

+

+

=

+
+

60

70

80

90

100

CL DL LK CN PR OV LK1 SR

Dataset

K
N

N
 A

c
c
u
ra

c
y

F−MGPFC CDFC

(a) KNN

+

+
+

+

+

=

+
+

60

70

80

90

100

CL DL LK CN PR OV LK1 SR

Dataset

N
B

 A
c
c
u
ra

c
y

F−MGPFC CDFC

(b) NB

=

= =

=

−−

=

=
+

60

70

80

90

100

CL DL LK CN PR OV LK1 SR

Dataset

D
T

 A
c
c
u

ra
c
y

F−MGPFC CDFC

(c) DT

0.0

2.5

5.0

7.5

CL DL LK CN PR OV LK1 SR

Dataset

A
c
c
u

ra
c
y
 I

m
p

ro
ve

m
e

n
t

(%
)

 KNN NB DT

(d) Average accuracy Improve-

ment

Figure 6: Results of class-dependent (CDFC) versus class-independent (fMCIFC) feature

construction.

of each constructed feature is still much lower. Therefore, the running time of

CDFC was much faster than hMCIFC. This again confirmed the efficiency of460

filter measures.

5.2. Class-Dependent versus Class-Independent FC

Since CDFC differs from hMCIFC not only in the class-dependent feature

construction strategy but also in the fitness function, the superior performance

of CDFC over hMCIFC might be contributed by either components or both465

of them. Therefore, the effectiveness of the proposed class-dependent feature

construction strategy should be confirmed by another set of experiments where

CDFC is compared with with fMCIFC, which is the same method as hMCIFC

except that its fitness function uses Eq. (9).

Fig. 6 shows the average results over the 50 runs of fMCIFC and CDFC.470

21

The first three sub-figures present the average test accuracy of KNN, NB and

DT of each method. In these figures, each group of bars shows the results

of the features constructed by fMCIFC and CDFC on each dataset. On the

CDFC bars, results of the Wilcoxon significance test with a 5% significance

level comparing CDFC against CGPFC are displayed. “+” and “–” mean that475

CDFC is significantly better or worse than CGPFC. “=” means that they are

similar. The last subfigure shows the average accuracy improvement of each

learning algorithm on each dataset.

As can be seen in Fig. 6(a), using CDFC constructed features, KNN ob-

tained significantly higher average accuracies than using fMCIFC constructed480

features on all datasets with the biggest gap of 7.9% on SRBCT which is a four-

class problem. A similar pattern was seen for NB in Fig. 6(b) with a significant

improvement made on seven out of the eight datasets. SRBCT was also the

one that NB obtained the highest average improvement of more than 8% on

average. For DT, significantly higher accuracies were found on three datasets485

and the remaining five had similar performance as fMCIFC. The compared re-

sults of different learning algorithms in Fig. 6(d) showed that among the three

algorithms, KNN had the highest improvements on five datasets and NB on the

remaining three. In general, features constructed by CDFC helped the three

learning algorithms either obtained a significantly better or similar classifica-490

tion performance on all datasets. This indicated that by constructing features

from relevant features to one class, thus narrowing the GP search space, and

evaluating each constructed feature against the corresponding class only, CDFC

could construct features with better discriminating ability.

5.3. Multiple versus Single Feature Construction495

This section will check the hypothesis that multiple constructed features may

better represent the original problem than a single constructed feature. Since

the clustering-based single feature construction method (CGPFC) proposed in

[23] has shown to have better performance than standard GP, the performance

of the features constructed by CDFC will be compared with the single feature500

22

+

+ +

+

+

+

50

60

70

80

90

100

CL DL LK CN PR OV

Dataset

K
N

N
 A

c
c
u
ra

c
y

CGPFC CDFC

(a) KNN

+

+ +

+

+

+

50

60

70

80

90

100

CL DL LK CN PR OV

Dataset

N
B

 A
c
c
u
ra

c
y

CGPFC CDFC

(b) NB

+

+ =

=

+

=

50

60

70

80

90

100

CL DL LK CN PR OV

Dataset

D
T

 A
c
c
u

ra
c
y

CGPFC CDFC

(c) DT

0.0

2.5

5.0

7.5

10.0

CL DL LK CN PR OV

Dataset

A
c
c
u

ra
c
y
 I

m
p

ro
ve

m
e

n
t

(%
)

 KNN NB DT

(d) Accuracy Improvement

Figure 7: Results of multiple feature construction (CDFC) versus single feature construction

(CGPFC)

constructed by CGPFC.

Fig. 7 shows the compared results of CDFC and CGPFC over the 50 runs on

six binary-class datasets. Since CGPFC was designed to construct features for

binary-class problems only, the two multiple-class datasets, namely Leukemia1

and SRBCT, are left out in this comparison.505

Results in Fig. 7(a) showed that the CDFC constructed features obtained a

significantly higher KNN accuracy than CGPFC on all datasets with the largest

gap of 7.5% on DLBCL. Similar pattern was observed in Fig. 7(b) for NB with

an improvement made on all the datasets. For DT, significantly higher accura-

cies were found on 3 datasets and similar accuracies were found on the remaining510

three. In general, compared with the single feature constructed by CGPFC, the

four features constructed by CDFC helped the three learning algorithms ei-

ther obtained a significantly better or similar classification performance on all

datasets. The compared results of different learning algorithms in Fig. 7(d)

showed that among the three algorithms, KNN had the highest improvements515

23

=

+ +

=

+

+

60

70

80

90

100

CL DL LK CN PR OV

Dataset

K
N

N
 A

c
c
u
ra

c
y

1TGPFC CDFC

(a) KNN

=

+ +

=

+

+

60

70

80

90

100

CL DL LK CN PR OV

Dataset

N
B

 A
c
c
u
ra

c
y

1TGPFC CDFC

(b) NB

=

+ +

+

+

+

60

70

80

90

100

CL DL LK CN PR OV

Dataset

D
T

 A
c
c
u

ra
c
y

1TGPFC CDFC

(c) DT

0

5

10

15

CL CN DL LK LK1 OV PR SR

Dataset

A
c
c
u

ra
c
y
 I

m
p

ro
ve

m
e

n
t

(%
)

 KNN NB DT

(d) Accuracy Improvement

Figure 8: Results of multiple-tree GP (CDFC) versus single-tree GP (1TGPFC) for multiple

feature construction.

on four out of the six datasets. Furthermore, as can be seen in the first three

subfigures of Fig. 7, the error bars of CDFC were smaller than the correspond-

ing error bars of CGPFC in almost all cases. This indicated that using the

CDFC constructed features, the three learning algorithms obtained more stable

results than using the one constructed by CGPFC.520

5.4. Multi-Tree GP versus Single-Tree GP for Multiple Feature Construction

This section will compare the performance of CDFC with the method pro-

posed by Neshatian et al. [6] where single-tree GP was used to construct mul-

tiple features. It is named 1TGPFC here for presentation convenience. In this

method, GP was run multiple times, and each time constructed one feature525

focusing on discriminating instances from one class to other classes. Therefore,

two features will be constructed for a binary-class problem. 1TGPFC also fol-

lows a filter approach that uses the impurity of the class interval to evaluate

24

the constructed feature. The class interval is determined based on the range of

the constructed feature values but excluding 5% of the data points at either end530

of the intervals. Then the total number of data points which appeared in the

wrong class interval is used as the fitness value that needs to be minimised.

For a fair comparison with CDFC, the terminal set of 1TGPFC is also filtered

as in hMCIFC and fMCIFC. 1TGPFC is also run with the same settings for

GP parameters as in CDFC. In this set of experiments, CDFC was run with535

the construction ratio 1 to construct the same number of features as 1TGPFC.

The average results over the 50 runs of both methods are displayed in Fig. 8.

Results from Fig. 8 showed that using the CDFC constructed features, all

the three learning algorithms obtained significantly higher accuracies than using

the ones created by 1TGPFC on all datasets. KNN obtained the largest increase540

of 8.1% average accuracy on Prostate, NB had 7.2% biggest gap on CNS, and

DT achieved 13% increase on SRBCT. Comparisons between the three learning

algorithms in Fig. 8(d) showed that KNN had the highest improvement on four

datasets. On the other four datasets, DT had the largest difference of 10.5%

and 13% on Leukemia1 and SRBCT, which are the multiple-class problems.545

Although 1TGPFC used an impurity measure in its fitness function to min-

imise the impurity of the interval including constructed feature values of the

focused class, its created features did not perform as well as expected, leading

to significantly worse results than CDFC. This result may be related to the

fact that by using a multi-tree representation to construct multiple features si-550

multaneously, CDFC can evaluate the constructed features as a whole during

the evolutionary process. This enabled it to optimise the discriminating power

of the whole feature set, taking into account possible interactions between the

constructed features. This ability is obviously impossible when running GP

separately to construct one feature at a time as in 1TGPFC.555

A confirmation of this hypothesis was made by having a closer look at the

features constructed by both the CDFC and 1TGPFC methods. A fair com-

parison is made by choosing the set of constructed features that had the worst

performance among 50 results from 50 runs obtained by each method on the first

25

−3

0

3

6

−2.5 0.0 2.5 5.0

CF1

C
F

2

−5.0

−2.5

0.0

2.5

−3 0 3

CF1

C
F

2

−4

0

4

8

0 1 2 3

CF1

C
F

2

−5.0

−2.5

0.0

2.5

−1 0 1 2 3 4

CF1

C
F

2

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

CF1

C
F

2

(a) Colon

0.0

0.4

0.8

1.2

−4 −3 −2 −1 0 1

CF1

C
F

2

(b) DLBCL

0

4

8

12

0 1 2 3 4 5

CF1

C
F

2

(c) Leukemia

0.0

0.5

1.0

1.5

2.0

0 5

CF1

C
F

2

(d) CNS

Figure 9: Data transformed by 1TGPFC (the first row) and CDFC (the second row) on Colon,

DLBCL, Leukemia, and CNS.

0

4

8

12

0 1 2 3 4 5

CF1

C
F

2

0.0

0.5

1.0

1.5

2.0

0 5

CF1

C
F

2

−10 −5 0 5 10

−
6

−
4

−
2

 0
 2

 4
 6

 8

0

1

2

3

4

5

6

CF1

C
F

2

C
F

3

0.0

0.5

1.0

1.5

2.0

−5 0 5

CF1

C
F

2

(a) Prostate

0

1

2

3

0 5 10 15

CF1

C
F

2

(b) Ovarian

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

 0
 2

 4
 6

 8
1
0

1
2

−0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

CF1

C
F

2

C
F

3

(c) Leukemia1

Figure 10: Data transformed by 1TGPFC (the first row) and CDFC (the second row) on

Prostate, Ovarian, and Leukemia1.

pair of training and test folds. The reason for comparing the worst results of560

both method is that the difference between the best results is not large enough

to be visually distinguished. The transformed data of seven datasets (excluding

SRBCT with more than 3 constructed features) using the constructed features

by both methods are plotted in Figs. 9 and 10.

As can be seen from these figures, the constructed features by both methods565

26

were quite good in grouping instances of different classes into separate clouds.

However, as can be seen from the second row of each figure, the data clouds

produced by CDFC were more compact and separated from each other than

those created by 1TGPFC, which are shown in the first row of the figures.

Therefore, with the new representation obtained from CDFC, it would be much570

easier for the three classification algorithms to find a model that achieved higher

accuracies.

Since both methods constructed features focusing on discriminating instances

of one class from the others, contributions to the superior results of CDFC

mainly came from its fitness function. While both methods used an entropy-575

based measure to minimise the impurity of the constructed feature values within

each class, CDFC incorporated an additional distance measure to evaluate the

whole set of constructed features. The aim of the distance measure is to max-

imise the distance between instances of different classes and minimise the dis-

tance between instances of the same class. This is the reason why the data580

clouds produced by CDFC are more compact and scattered far away from each

other.

Figure 11: Three constructed features on Leukemia1: CF1 (upper left), CF2 (lower left) and

CF3 (right).

27

X
5
7
1

X
1
2
7
1

X
1
3
1
7

X
1
7
8
6

X
1
9
9
9

X
2
4
1
9

X
2
4
6
0

X
2
8
0
5

X
3
0
5
1

X
3
0
9
5

X
4
6
7
0

C
F

1

C
F

2

C
F

3

C
la

s
s

1
2
3
4
9
10
11
12
16
17
18
19
23
24
25
26
30
31
32
33
37
38
39
40
44
45
46
47
51
52
53
58
59
60
65
66
67
68
8
22
29
36
43
50
57
64
72
5
6
7
13
14
15
20
21
27
28
34
35
41
42
48
49
54
55
56
61
62
63
69
70
71

Figure 12: Heatmap showing the data of the 11 selected and 3 constructed features by the

individual shown in Fig. 11 on Leukemia1.

5.5. Constructed Features

An investigation on the constructed features was conducted to further ex-

plain the effectiveness of CDFC. Among the 500 returned sets of three features585

constructed by CDFC for Leukemia1, a dataset with three classes, we chose one

set that had a relatively small size to analyse.

Fig. 11 shows one of the returned GP individuals by CDFC on the Leukemia1

dataset. This individual has three trees representing 3 features constructed for

3 classes. It has totally 33 nodes including 11 features. Using this set of three590

constructed features, all the three learning algorithms which are KNN, NB and

DT obtained 100% test accuracy.

A comparison between the original selected features and the constructed

ones was conducted to show the effect of the feature construction. Fig. 12 shows

the data of the 11 selected and 3 constructed features on Leukemia1 using the595

28

individual shown in Fig. 11. All the instances (or rows) are sorted based on

the class label (shown in the last column of Fig. 12). Class 1 (in orange) is the

largest class with 25 instances located at the bottom of the heatmap. As can

be seen from Fig. 12 that the values of feature X1999 can distinguish between

class 1 and the other two classes. This confirms its importance and explains why600

CDFC chose it as the first feature in the tree CF1. Similarly, the two features

appeared in CF2, X571 and X3051, have special ranges of values for instances

belonging to class 2. Combining these features, CDFC constructed much purer

features that are more relevant to the class label than the original ones as shown

in the three columns CF1, CF2 and CF3 of Fig. 12. The constructed feature605

CF1 has only two values, one for class 1 and one for the other 2 classes. Similarly,

CF2 and CF3 also have a distinct value for their associating class. Therefore,

it is much easier for learning algorithms to generate a good model from these

features.

6. Conclusion610

The goal of this study was to investigate different approaches to multiple

feature construction using GP which can produce a very small number of high-

level features to improve the performance of common learning algorithms on

high-dimensional data. Two methods using multi-tree GP representation were

investigated, one constructs features that are independent to the class (MCIFC)615

and one constructs features that are class-dependent (CDFC). The two meth-

ods were compared in the same context of using t-Test to filter out irrelevant

features as a means of narrowing GP search space. Two variants of MCIFC

were compared with CDFC, one uses a hybrid evaluation method (hMCIFC) to

synthesise the strength of wrapper and filter approach and the other uses the620

same filter measure as CDFC (fMCIFC).

Comparisons made on the eight high-dimensional datasets showed that the

class-dependent constructed features achieved better classification performance

than the class-independent ones, regardless of using the same filter measure or

29

the combined wrapper and filter one to evaluate the constructed features. Com-625

parison of CDFC and the single feature construction method CGPFC proposed

in [23]. has also shown that multiple constructed features better represent the

original high-dimensional data than a single one.

CDFC also achieved better classification accuracy than the class-dependent

feature construction method using the single tree GP representation (1TGPFC).630

This is due to the fact that CDFC uses a multi-tree representation, which enables

it to construct and evaluate the whole set of constructed features in a single run.

Therefore, it can determine the interaction of the newly constructed features

during the construction process. Further analysis on the constructed features

showed the effectiveness of CDFC’s fitness function which combines two simple635

filter measures to guide the search for better discriminating features.

References

[1] P. N. Stuart J. Russell, Artificial intelligence: A modern approach (second

edition), Pearson Education.

[2] H. Zhao, A. P. Sinha, W. Ge, Effects of feature construction on classifica-640

tion performance: An empirical study in bank failure prediction, Expert

Systems with Applications 36 (2009) 2633–2644. doi:10.1016/j.eswa.

2008.01.053.

[3] K. Neshatian, Feature manipulation with genetic programming, Ph.D. the-

sis, Victoria University of Wellington, Wellington, New Zealand (2010).645

[4] S. Ahmed, M. Zhang, L. Peng, A new gp-based wrapper feature con-

struction approach to classification and biomarker identification, in: IEEE

Congress on Evolutionary Computation, 2014, pp. 2756–2763.

[5] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic fea-

ture extraction using genetic programming: An application to epileptic eeg650

classification, Expert Systems with Applications 38 (8) (2011) 10425–10436.

30

http://dx.doi.org/10.1016/j.eswa.2008.01.053
http://dx.doi.org/10.1016/j.eswa.2008.01.053
http://dx.doi.org/10.1016/j.eswa.2008.01.053

[6] K. Neshatian, M. Zhang, P. Andreae, A filter approach to multiple feature

construction for symbolic learning classifiers using genetic programming,

IEEE Transactions on Evolutionary Computation 16 (5) (2012) 645–661.

[7] M. Garcia-Limon, H. J. Escalante, E. Morales, A. Morales-Reyes, Simulta-655

neous generation of prototypes and features through genetic programming,

in: Proceedings of the Annual Conference on Genetic and Evolutionary

Computation, ACM, 2014, pp. 517–524.

[8] K. Krawiec, Genetic programming-based construction of features for ma-

chine learning and knowledge discovery tasks, Genetic Programming and660

Evolvable Machines 3 (2002) 329–343.

[9] M. Smith, L. Bull, Genetic Programming with a Genetic Algorithm for

Feature Construction and Selection, Genetic Programming and Evolvable

Machines 6 (2005) 265–281.

[10] B. Tran, M. Zhang, B. Xue, Multiple feature construction in classification665

on high-dimensional data using gp, in: 2016 IEEE Symposium Series on

Computational Intelligence (SSCI), 2016, pp. 1–8.

[11] B. Tran, B. Xue, M. Zhang, Class dependent multiple feature construction

using genetic programming forhigh-dimensional data, in: AI 2017: Ad-

vances in Artificial Intelligence, Vol. 10400 of Lecture Notes in Computer670

Science, Springer International Publishing, 2017, pp. 182–194.

[12] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Com-

puters & Electrical Engineering 40 (2014) 16–28.

[13] B. Tran, B. Xue, M. Zhang, Genetic programming for feature construction

and selection in classification on high-dimensional data, Memetic Comput-675

ing 8 (1) (2015) 3–15.

[14] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, Genetic pro-

gramming for improved data mining: Application to the biochemistry of

31

protein interactions, in: Proceedings of the 1st Annual Conference on Ge-

netic Programming, MIT Press, Cambridge, MA, USA, 1996, pp. 375–380.680

[15] M. Ahluwalia, L. Bull, Coevolving functions in genetic programming: clas-

sification using k-nearest-neighbour, in: Proceedings of the 1st Annual

Conference on Genetic and Evolutionary Computation-Volume 2, Morgan

Kaufmann Publishers Inc., 1999, pp. 947–952.

[16] B. Bhanu, K. Krawiec, Coevolutionary construction of features for trans-685

formation of representation in machine learning, in: Proceedings of Genetic

and Evolutionary Computation Conference, Press, 2002, pp. 249–254.

[17] F. Otero, M. Silva, A. Freitas, J. Nievola, Genetic programming for

attribute construction in data mining, in: Genetic Programming, Vol.

2610, Springer Berlin Heidelberg, 2003, pp. 384–393. doi:10.1007/690

3-540-36599-0_36.

[18] M. Muharram, G. Smith, The Effect of Evolved Attributes on Classification

Algorithms, in: AI 2003: Advances in Artificial Intelligence, Vol. 2903,

Springer Berlin Heidelberg, 2003, pp. 933–941.

[19] M. Muharram, G. Smith, Evolutionary constructive induction, IEEE695

Transactions on Knowledge and Data Engineering 17 (2005) 1518–1528.

[20] K. Neshatian, M. Zhang, M. Johnston, Feature Construction and Dimen-

sion Reduction Using Genetic Programming, in: Advances in Artificial In-

telligence, Vol. 4830, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,

pp. 160–170.700

[21] K. Neshatian, M. Zhang, Genetic programming for performance improve-

ment and dimensionality reduction of classification problems, in: IEEE

Congress on Computational Intelligence, 2008, pp. 2811–2818.

[22] H. B. Nguyen, B. Xue, P. Andreae, A Hybrid GA-GP Method for Feature

Reduction in Classification, Springer International Publishing, 2017, pp.705

591–604. doi:10.1007/978-3-319-68759-9_48.

32

http://dx.doi.org/10.1007/3-540-36599-0_36
http://dx.doi.org/10.1007/3-540-36599-0_36
http://dx.doi.org/10.1007/3-540-36599-0_36
http://dx.doi.org/10.1007/978-3-319-68759-9_48

[23] B. Tran, B. Xue, M. Zhang, Using feature clustering for gp-based feature

construction on high-dimensional data, in: Proceedings of 20th European

Conference on Genetic Programming, Springer International Publishing,

Cham, 2017, pp. 210–226.710

[24] M. G. Smith, L. Bull, Using Genetic Programming for Feature Cre-

ation with a Genetic Algorithm Feature Selector, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2004, pp. 1163–1171. doi:10.1007/

978-3-540-30217-9_117.

[25] M. Smith, L. Bull, Improving the human readability of features constructed715

by genetic programming, in: Proceedings of the 9th annual conference on

Genetic and evolutionary computation, ACM, 2007, pp. 1694–1701.

[26] H. Vafaie, K. De Jong, Genetic algorithms as a tool for restructuring

feature space representations, in: Proceedings of the Seventh Interna-

tional Conference on Tools with Artificial Intelligence, 1995, pp. 8–11.720

doi:10.1109/TAI.1995.479372.

[27] G. Patterson, M. Zhang, Fitness functions in genetic programming for clas-

sification with unbalanced data, in: Proceedings of the 20th Australian

Joint Conference on Artificial Intelligence (AI), Springer Berlin Heidelberg,

2007, pp. 769–775.725

[28] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, M. Zhang, Automatically

evolving rotation-invariant texture image descriptors by genetic program-

ming, IEEE Transactions on Evolutionary Computation 21 (1) (2017) 83–

101. doi:10.1109/TEVC.2016.2577548.

[29] S.-H. Cha, Comprehensive survey on distance/similarity measures between730

probability density functions, International Journal of Mathematical Mod-

els and Methods in Applied Sciences 1 (2007) 300.

[30] Z. Zhu, Y.-S. Ong, M. Dash, Markov blanket-embedded genetic algorithm

for gene selection, Pattern Recognition 40 (11) (2007) 3236–3248.

33

http://dx.doi.org/10.1007/978-3-540-30217-9_117
http://dx.doi.org/10.1007/978-3-540-30217-9_117
http://dx.doi.org/10.1007/978-3-540-30217-9_117
http://dx.doi.org/10.1109/TAI.1995.479372
http://dx.doi.org/10.1109/TEVC.2016.2577548

[31] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, A compre-735

hensive evaluation of multicategory classification methods for microarray

gene expression cancer diagnosis, Bioinformatics 21 (2005) 631–643.

[32] C. Ding, H. Peng, Minimum redundancy feature selection from microarray

gene expression data, Journal of bioinformatics and computational biology

3 (02) (2005) 185–205.740

[33] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bul-

letin 1 (6) (1945) 80–83.

34

	Introduction
	Goals

	Related Work
	Single-Tree GP-Based Feature Construction
	Multi-Tree GP-Based Feature Construction

	Multiple Feature Construction Methods
	MCIFC: A Multiple Class-Independent Feature Construction Method
	CDFC: A Multiple Class-Dependent Feature Construction Method

	Experiment Design
	Datasets
	Experiment Configuration
	Parameter Settings

	Results and Discussions
	Filter Class-Dependent Versus Hybrid Class-Independent Methods
	CDFC versus Full
	CDFC versus hMCIFC
	Computation Time

	Class-Dependent versus Class-Independent FC
	Multiple versus Single Feature Construction
	Multi-Tree GP versus Single-Tree GP for Multiple Feature Construction
	Constructed Features

	Conclusion

