Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard cell signal γ-aminobutyric acid (GABA) is produced from glutamate by glutamate decarboxylase (GAD) during a reaction that generates CO2 as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant Arabidopsis lines gad2-1, gad2-2, and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2-a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter renamed as gad2-1*. Guard cell-specific complementation of MPK12 in gad2-1* restored the wild-type CO2 phenotype, which confirms the proposed importance of MPK12 in CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening channel ALUMINIUM-ACTIVATED MALATE TRANSPORTER 9 (ALMT9). Our results demonstrate that GABA has a role in modulating the rate of stomatal opening and closing, but not in response to CO2per se.
Funding
This work was funded by ARC Discovery grant DP210102828 to MG, JK, and RH and ARC Centre of Excellence grant CE230100015 to MG and ML. AP was supported by the GOstralia!/University of Adelaide PhD Scholarship and a School of Agriculture, Food and Wine Short Term Scholarship.