La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

Flicker fusion thresholds as a clinical identifier of a magnocellular-deficit dyslexic subgroup

The magnocellular-dorsal system is well isolated by high temporal frequency. However, temporal processing thresholds have seldom been explored in developmental dyslexia nor its subtypes. Hence, performances on two, four-alternative forced-choice achromatic flicker fusion threshold tasks modulated at low (5%) and high (75%) temporal contrast were compared in dyslexic and neurotypical children individually matched for age and intelligence (8-12 years, n = 54 per group). As expected, the higher modulation resulted in higher flicker fusion thresholds in both groups. Compared to neurotypicals, the dyslexic group displayed significantly lower ability to detect flicker at high temporal frequencies, both at low and high temporal contrast. Yet, discriminant analysis did not adequately distinguish the dyslexics from neurotypicals, on the basis of flicker thresholds alone. Rather, two distinct dyslexic subgroups were identified by cluster analysis - one characterised by significantly lower temporal frequency thresholds than neurotypicals (referred to as 'Magnocellular-Deficit' dyslexics; 53.7%), while the other group ('Magnocellular-Typical' dyslexics; 46.3%) had comparable thresholds to neurotypicals. The two dyslexic subgroups were not differentially associated with phonological or naming speed subtypes and showed comparable mean reading rate impairments. However, correlations between low modulation flicker fusion threshold and reading rate for the two subgroups were significantly different (p = .0009). Flicker fusion threshold performances also showed strong classification accuracy (79.3%) in dissociating the Magnocellular-Deficit dyslexics and neurotypicals. We propose that temporal visual processing impairments characterize a previously unidentified subgroup of dyslexia and suggest that measurement of flicker fusion thresholds could be used clinically to assist early diagnosis and appropriate treatment recommendations for dyslexia.

History

Publication Date

2020-12-10

Journal

Scientific Reports

Volume

10

Issue

1

Article Number

21638

Pagination

10p.

Publisher

Springer Nature

ISSN

2045-2322

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC