La Trobe
- No file added yet -

Fairness optimisation with multi-objective swarms for explainable classifiers on data streams

Download (535.62 kB)
journal contribution
posted on 2024-07-29, 22:54 authored by Thi Xuan Diem PHAMThi Xuan Diem PHAM, Binh TranBinh Tran, Su Nguyen, Damminda AlahakoonDamminda Alahakoon, Mengjie Zhang
Recently, advanced AI systems equipped with sophisticated learning algorithms have emerged, enabling the processing of extensive streaming data for online decision-making in diverse domains. However, the widespread deployment of these systems has prompted concerns regarding potential ethical issues, particularly the risk of discrimination that can adversely impact certain community groups. This issue has been proven to be challenging to address in the context of streaming data, where data distribution can change over time, including changes in the level of discrimination within the data. In addition, transparent models like decision trees are favoured in such applications because they illustrate the decision-making process. However, it is essential to keep the models compact because the explainability of large models can diminish. Existing methods usually mitigate discrimination at the cost of accuracy. Accuracy and discrimination, therefore, can be considered conflicting objectives. Current methods are still limited in controlling the trade-off between these conflicting objectives. This paper proposes a method that can incrementally learn classification models from streaming data and automatically adjust the learnt models to balance multi-objectives simultaneously. The novelty of this research is to propose a multi-objective algorithm to maximise accuracy, minimise discrimination and model size simultaneously based on swarm intelligence. Experimental results using six real-world datasets show that the proposed algorithm can evolve fairer and simpler classifiers while maintaining competitive accuracy compared to existing state-of-the-art methods tailored for streaming data.

History

Publication Date

2024-08-01

Journal

Complex and Intelligent Systems

Volume

10

Pagination

14p. (p. 4741-4754)

Publisher

Springer Nature

ISSN

2199-4536

Rights Statement

© The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC