La Trobe
1187605_Esmaeili,F_2021.pdf (3.22 MB)
Download file

Evaluation of the Effectiveness of Herbal Components Based on Their Regulatory Signature on Carcinogenic Cancer Cells

Download (3.22 MB)
journal contribution
posted on 04.01.2022, 23:40 authored by F Esmaeili, T Lohrasebi, Manijeh Mohammadi DehcheshmehManijeh Mohammadi Dehcheshmeh, Esmaeil EbrahimieEsmaeil Ebrahimie
Predicting cancer cells’ response to a plant-derived agent is critical for the drug discovery process. Recently transcriptomes advancements have provided an opportunity to identify regulatory signatures to predict drug activity. Here in this study, a combination of meta-analysis and machine learning models have been used to determine regulatory signatures focusing on differentially ex-pressed transcription factors (TFs) of herbal components on cancer cells. In order to increase the size of the dataset, six datasets were combined in a meta-analysis from studies that had evaluated the gene expression in cancer cell lines before and after herbal extract treatments. Then, categorical feature analysis based on the machine learning methods was applied to examine transcription factors in order to find the best signature/pattern capable of discriminating between control and treated groups. It was found that this integrative approach could recognize the combination of TFs as predictive biomarkers. It was observed that the random forest (RF) model produced the best combination rules, including AIP/TFE3/VGLL4/ID1 and AIP/ZNF7/DXO with the highest modulating capacity. As the RF algorithm combines the output of many trees to set up an ultimate model, its predictive rules are more accurate and reproducible than other trees. The discovered regulatory signature suggests an effective procedure to figure out the efficacy of investigational herbal compounds on particular cells in the drug discovery process.

History

Publication Date

12/11/2021

Journal

Cells

Volume

10

Issue

11

Article Number

3139

Pagination

17p.

Publisher

MDPI

ISSN

2073-4409

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

Categories

Licence

Exports