La Trobe
1178299_Richardson,C_2021.pdf (335.17 kB)
Download file

Estimating methane coefficients to predict the environmental impact of traits in the Australian dairy breeding program

Download (335.17 kB)
journal contribution
posted on 30.11.2021, 00:15 by Maria Regina Caeli RichardsonMaria Regina Caeli Richardson, PR Amer, FS Hely, I van den Berg, Jennie PryceJennie Pryce
The dairy industry has been scrutinized for the environmental impact associated with rearing and maintaining cattle for dairy production. There are 3 possible opportunities to reduce emissions through genetic selection: (1) a direct methane trait, (2) a reduction in replacements, and (3) an increase in productivity. Our aim was to estimate the independent effects of traits in the Australian National Breeding Objective on the gross methane production and methane intensity (EI) of the Australian dairy herd of average genetic potential. Based on similar published research, the traits determined to have an effect on emissions include production, fertility, survival, health, and feed efficiency. The independent effect of each trait on the gross emissions produced per animal due to genetic improvement and change in EI due to genetic improvement (intensity value, IV) were estimated and compared. Based on an average Australian dairy herd, the gross emissions emitted per cow per year were 4,297.86 kg of carbon dioxide equivalents (CO2-eq). The annual product output, expressed in protein equivalents (protein-eq), and EI per cow were 339.39 kg of protein-eq and 12.67 kg of CO2-eq/kg of protein-eq, respectively. Of the traits included in the National Breeding Objective, genetic progress in survival and feed saved were consistently shown to result in a favorable environmental impact. Conversely, production traits had an unfavorable environmental impact when considering gross emissions, and favorable when considering EI. Fertility had minimal impact as its effects were primarily accounted for through survival. Mastitis resistance only affected IV coefficients and to a very limited extent. These coefficients may be used in selection indexes to apply emphasis on traits based on their environmental impact, as well as applied by governments and stakeholders to track trends in industry emissions. Although initiatives are underway to develop breeding values to reduce methane by combining small methane data sets internationally, alternative options to reduce emissions by utilizing selection indexes should be further explored.

History

Publication Date

01/10/2021

Journal

Journal of Dairy Science

Volume

104

Issue

10

Pagination

(p. 10979-10990)

Publisher

Elsevier

ISSN

0022-0302

Rights Statement

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Usage metrics

Categories

Exports