La Trobe

Effects of increasing salinity on freshwater ecosystems in Australia

journal contribution
posted on 2023-04-03, 17:51 authored by D. L Nielsen, M. A Brock, G. N Rees, D. S Baldwin
La Trobe University Faculty of Science, Technology and Engineering Murray Darling Freshwater Research Centre

MDFRC item.

Salt is a natural component of the Australian landscape to which a number of biota inhabiting rivers and wetlands are adapted. Under natural flow conditions periods of low flow have resulted in the concentration of salts in wetlands and riverine pools. The organisms of these systems survive these salinities by tolerance or avoidance. Freshwater ecosystems in Australia are now becoming increasingly threatened by salinity because of rising saline groundwater and modification of the water regime reducing the frequency of high-flow (flushing) events, resulting in an accumulation of salt. Available data suggest that aquatic biota will be adversely affected as salinity exceeds 1000 mg L–1 (1500 EC) but there is limited information on how increasing salinity will affect the various life stages of the biota. Salinisation can lead to changes in the physical environment that will affect ecosystem processes. However, we know little about how salinity interacts with the way nutrients and carbon are processed within an ecosystem. This paper updates the knowledge base on how salinity affects the physical and biotic components of aquatic ecosystems and explores the needs for information on how structure and function of aquatic ecosystems change with increasing salinity.

History

Publication Date

2003-07-01

Journal

Australian Journal of botany.

Volume

51

Issue

6

Pagination

655-665

Publisher

CSIRO Publishing.

Rights Statement

Available to MDFRC staff only.

Data source

arrow migration 2023-03-15 20:45. Ref: f1b71f. IDs:['http://hdl.handle.net/1959.9/538250', 'latrobe:33285']

Usage metrics

    Journal Articles

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC