La Trobe

Dynamic changes in host gene expression following In Vitro Viral Mimic stimulation in crocodile cells

Version 2 2020-11-09, 00:35
Version 1 2020-11-08, 23:54
journal contribution
posted on 2020-11-09, 00:35 authored by Subir SarkerSubir Sarker, Yinan Wang, Brenden Warren-Smith, Karla HelbigKarla Helbig
© 2017 Sarker, Wang, Warren-Smith and Helbig. The initial control of viral infection in a host is dominated by a very well orchestrated early innate immune system; however, very little is known about the ability of a host to control viral infection outside of mammals. The reptiles offer an evolutionary bridge between the fish and mammals, with the crocodile having evolved from the archosauria clade that included the dinosaurs, and being the largest living reptile species. Using an RNA-seq approach, we have defined the dynamic changes of a passaged primary crocodile cell line to stimulation with both RNA and DNA viral mimics. Cells displayed a marked upregulation of many genes known to be involved in the mammalian response to viral infection, including viperin, Mx1, IRF7, IRF1, and RIG-I with approximately 10% of the genes being uncharacterized transcripts. Both pathway and genome analysis suggested that the crocodile may utilize the main known mammalian TLR and cytosolic antiviral RNA signaling pathways, with the pathways being responsible for sensing DNA viruses less clear. Viral mimic stimulation upregulated the type I interferon, IFN-Omega, with many known antiviral interferon-stimulated genes also being upregulated. This work demonstrates for the first time that reptiles show functional regulation of many known and unknown antiviral pathways and effector genes. An enhanced knowledge of these ancient antiviral pathways will not only add to our understanding of the host antiviral innate response in non-mammalian species, but is critical to fully comprehend the complexity of the mammalian innate immune response to viral infection.

Funding

The authors would like to thank the Berrimah Veterinary Laboratory (Department of Primary Industry and Resources, Government of Northern Territory, Australia) for providing the C. porosus liver cell line (LV-1) used in this experiment. The authors also like to thank La Trobe University for the financial support under Start Up Grant to SS and KH.

La Trobe University

History

Publication Date

2017-01-01

Journal

Frontiers in Immunology

Volume

8

Article Number

1634

Pagination

15p.

Publisher

Frontiers Research Foundation

ISSN

1664-3224

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.