La Trobe
- No file added yet -

Divergence from, and Convergence to, Uniformity of Probability Density Quantiles

Download (972.89 kB)
journal contribution
posted on 2023-05-11, 03:34 authored by Robert StaudteRobert Staudte, Aihua Xia
We demonstrate that questions of convergence and divergence regarding shapes of distributions can be carried out in a location- and scale-free environment. This environment is the class of probability density quantiles (pdQs), obtained by normalizing the composition of the density with the associated quantile function. It has earlier been shown that the pdQ is representative of a location-scale family and carries essential information regarding shape and tail behavior of the family. The class of pdQs are densities of continuous distributions with common domain, the unit interval, facilitating metric and semi-metric comparisons. The Kullback-Leibler divergences from uniformity of these pdQs are mapped to illustrate their relative positions with respect to uniformity. To gain more insight into the information that is conserved under the pdQ mapping, we repeatedly apply the pdQ mapping and find that further applications of it are quite generally entropy increasing so convergence to the uniform distribution is investigated. New fixed point theorems are established with elementary probabilistic arguments and illustrated by examples.

History

Publication Date

2018-04-25

Journal

Entropy

Volume

20

Issue

5

Article Number

317

Pagination

10p.

Publisher

MDPI

ISSN

1099-4300

Rights Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC