sorry, we can't preview this file
...but you can still download 1152011_Encinas-Viso,F_2020.pdf
1152011_Encinas-Viso,F_2020.pdf (950.74 kB)
Different landscape effects on the genetic structure of two broadly distributed woody legumes, Acacia salicina and A. stenophylla (Fabaceae)
journal contribution
posted on 2021-01-29, 04:28 authored by F Encinas-Viso, C McDonald-Spicer, N Knerr, PH Thrall, Linda BroadhurstLinda Broadhurst© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Restoring degraded landscapes has primarily focused on re-establishing native plant communities. However, little is known with respect to the diversity and distribution of most key revegetation species or the environmental and anthropogenic factors that may affect their demography and genetic structure. In this study, we investigated the genetic structure of two widespread Australian legume species (Acacia salicina and Acacia stenophylla) in the Murray–Darling Basin (MDB), a large agriculturally utilized region in Australia, and assessed the impact of landscape structure on genetic differentiation. We used AFLP genetic data and sampled a total of 28 A. salicina and 30 A. stenophylla sampling locations across southeastern Australia. We specifically evaluated the importance of four landscape features: forest cover, land cover, water stream cover, and elevation. We found that both species had high genetic diversity (mean percentage of polymorphic loci, 55.1% for A. salicina versus. 64.3% for A. stenophylla) and differentiation among local sampling locations (A. salicina: ΦPT = 0.301, 30%; A. stenophylla: ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co-occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors.
Funding
This research was jointly funded by CSIRO and the New South Wales Environment Trust. The authors would like to thank Jo Slattery and Jacqui McKinnon for field assistance and for bacterial isolation and purification and Michelle Watt and Michael Grossman for constructive comments on the original manuscript.
History
Publication Date
2020-12-01Journal
Ecology and EvolutionVolume
10Issue
23Pagination
12p. (p. 13476-13487)Publisher
WileyISSN
2045-7758Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Categories
Keywords
Science & TechnologyLife Sciences & BiomedicineEcologyEvolutionary BiologyEnvironmental Sciences & EcologyAustraliaconnectivitygene flowhabitat fragmentationlandscape geneticspopulation structureresistance surfacesMURRAY-DARLING BASINHABITAT FRAGMENTATIONPOLLEN DISPERSALSPATIAL-ANALYSISCLIMATE-CHANGEDIVERSITYFLOWSUSCEPTIBILITYCONSEQUENCESCONNECTIVITY