La Trobe
journal.pone.0249843.pdf (2.2 MB)

Determining respiratory rate from photoplethysmogram and electrocardiogram signals using respiratory quality indices and neural networks

Download (2.2 MB)
journal contribution
posted on 12.04.2021, 04:55 by Stephanie Baker, Wei Xiang, Ian Atkinson
Continuous and non-invasive respiratory rate (RR) monitoring would significantly improve patient outcomes. Currently, RR is under-recorded in clinical environments and is often measured by manually counting breaths. In this work, we investigate the use of respiratory signal quality quantification and several neural network (NN) structures for improved RR estimation. We extract respiratory modulation signals from the electrocardiogram (ECG) and photoplethysmogram (PPG) signals, and calculate a possible RR from each extracted signal. We develop a straightforward and efficient respiratory quality index (RQI) scheme that determines the quality of each moonddulation-extracted respiration signal. We then develop NNs for the estimation of RR, using estimated RRs and their corresponding quality index as input features. We determine that calculating RQIs for modulation-extracted RRs decreased the mean absolute error (MAE) of our NNs by up to 38.17%. When trained and tested using 60-sec waveform segments, the proposed scheme achieved an MAE of 0.638 breaths per minute. Based on these results, our scheme could be readily implemented into non-invasive wearable devices for continuous RR measurement in many healthcare applications.

History

Publication Date

01/01/2021

Journal

PLOS ONE

Volume

16

Issue

4

Pagination

(p. e0249843-e0249843)

Publisher

Public Library of Science (PLoS)

ISSN

1932-6203

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

Journal Articles

Categories

Licence

Exports