La Trobe
1308068_Barry,N_2023.pdf (1.29 MB)

Delineation and agreement of FET PET biological volumes in glioblastoma: results of the nuclear medicine credentialing program from the prospective, multi-centre trial evaluating FET PET In Glioblastoma (FIG) study—TROG 18.06

Download (1.29 MB)
journal contribution
posted on 2023-11-27, 04:27 authored by N Barry, RJ Francis, MA Ebert, ES Koh, P Rowshanfarzad, GM Hassan, J Kendrick, Hui GanHui Gan, Sze LeeSze Lee, E Lau, BA Moffat, G Fitt, A Moore, P Thomas, DA Pattison, T Akhurst, R Alipour, EL Thomas, E Hsiao, GP Schembri, P Lin, T Ly, J Yap, I Kirkwood, W Vallat, S Khan, D Krishna, S Ngai, C Yu, S Beuzeville, TC Yeow, D Bailey, O Cook, A Whitehead, R Dykyj, A Rossi, A Grose, Andrew ScottAndrew Scott
Purpose: The O-(2-[18F]-fluoroethyl)-l-tyrosine (FET) PET in Glioblastoma (FIG) trial is an Australian prospective, multi-centre study evaluating FET PET for glioblastoma patient management. FET PET imaging timepoints are pre-chemoradiotherapy (FET1), 1-month post-chemoradiotherapy (FET2), and at suspected progression (FET3). Before participant recruitment, site nuclear medicine physicians (NMPs) underwent credentialing of FET PET delineation and image interpretation. Methods: Sites were required to complete contouring and dynamic analysis by ≥ 2 NMPs on benchmarking cases (n = 6) assessing biological tumour volume (BTV) delineation (3 × FET1) and image interpretation (3 × FET3). Data was reviewed by experts and violations noted. BTV definition includes tumour-to-background ratio (TBR) threshold of 1.6 with crescent-shaped background contour in the contralateral normal brain. Recurrence/pseudoprogression interpretation (FET3) required assessment of maximum TBR (TBRmax), dynamic analysis (time activity curve [TAC] type, time to peak), and qualitative assessment. Intraclass correlation coefficient (ICC) assessed volume agreement, coefficient of variation (CoV) compared maximum/mean TBR (TBRmax/TBRmean) across cases, and pairwise analysis assessed spatial (Dice similarity coefficient [DSC]) and boundary agreement (Hausdorff distance [HD], mean absolute surface distance [MASD]). Results: Data was accrued from 21 NMPs (10 centres, n ≥ 2 each) and 20 underwent review. The initial pass rate was 93/119 (78.2%) and 27/30 requested resubmissions were completed. Violations were found in 25/72 (34.7%; 13/12 minor/major) of FET1 and 22/74 (29.7%; 14/8 minor/major) of FET3 reports. The primary reasons for resubmission were as follows: BTV over-contour (15/30, 50.0%), background placement (8/30, 26.7%), TAC classification (9/30, 30.0%), and image interpretation (7/30, 23.3%). CoV median and range for BTV, TBRmax, and TBRmean were 21.53% (12.00–30.10%), 5.89% (5.01–6.68%), and 5.01% (3.37–6.34%), respectively. BTV agreement was moderate to excellent (ICC = 0.82; 95% CI, 0.63–0.97) with good spatial (DSC = 0.84 ± 0.09) and boundary (HD = 15.78 ± 8.30 mm; MASD = 1.47 ± 1.36 mm) agreement. Conclusion: The FIG study credentialing program has increased expertise across study sites. TBRmax and TBRmean were robust, with considerable variability in BTV delineation and image interpretation observed.

Funding

The FIG study is supported by the Medical Research Future Fund (MRFF) (Grant No. MRF1152501), MRFF Australian Brain Cancer Mission: Innovative Trials Grant MRF9500003, Cure Brain Cancer Foundation, the Victorian Cancer Agency Centre for Research Excellence in Brain Cancer, Cyclotek, and Telix Pharmaceuticals. NB gratefully acknowledges the award of the RTP scholarship from the University of Western Australia. NB was supported by a Cancer Council WA PhD Top Up Scholarship. AMS is supported by NHMRC Investigator Grant No 1177837. Special thanks to Anita and Anthony Parise for their generous contribution to brain cancer research at Sir Charles Gairdner Hospital.

History

Publication Date

2023-11-01

Journal

European Journal of Nuclear Medicine and Molecular Imaging

Volume

50

Pagination

(p. 3970-3981)

Publisher

Springer Nature

ISSN

1619-7070

Rights Statement

© The Author(s) 2023 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC